data.reck {sirt} | R Documentation |
Datasets from Reckase' Book Multidimensional Item Response Theory
Description
Some simulated datasets from Reckase (2009).
Usage
data(data.reck21)
data(data.reck61DAT1)
data(data.reck61DAT2)
data(data.reck73C1a)
data(data.reck73C1b)
data(data.reck75C2)
data(data.reck78ExA)
data(data.reck79ExB)
Format
The format of the
data.reck21
(Table 2.1, p. 45) is:List of 2
$ data: num [1:2500, 1:50] 0 0 0 1 1 0 0 0 1 0 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:50] "I0001" "I0002" "I0003" "I0004" ...
$ pars:'data.frame':
..$ a: num [1:50] 1.83 1.38 1.47 1.53 0.88 0.82 1.02 1.19 1.15 0.18 ...
..$ b: num [1:50] 0.91 0.81 0.06 -0.8 0.24 0.99 1.23 -0.47 2.78 -3.85 ...
..$ c: num [1:50] 0 0 0 0.25 0.21 0.29 0.26 0.19 0 0.21 ...
The format of the datasets
data.reck61DAT1
anddata.reck61DAT2
(Table 6.1, p. 153) isList of 4
$ data : num [1:2500, 1:30] 1 0 0 1 1 0 0 1 1 0 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:30] "A01" "A02" "A03" "A04" ...
$ pars :'data.frame':
..$ a1: num [1:30] 0.747 0.46 0.861 1.014 0.552 ...
..$ a2: num [1:30] 0.025 0.0097 0.0067 0.008 0.0204 0.0064 0.0861 ...
..$ a3: num [1:30] 0.1428 0.0692 0.404 0.047 0.1482 ...
..$ d : num [1:30] 0.183 -0.192 -0.466 -0.434 -0.443 ...
$ mu : num [1:3] -0.4 -0.7 0.1
$ sigma: num [1:3, 1:3] 1.21 0.297 1.232 0.297 0.81 ...
The dataset
data.reck61DAT2
has correlated dimensions whiledata.reck61DAT1
has uncorrelated dimensions.Datasets
data.reck73C1a
anddata.reck73C1b
use item parameters from Table 7.3 (p. 188). The datasetC1a
has uncorrelated dimensions, whileC1b
has perfectly correlated dimensions. The items are sensitive to 3 dimensions. The format of the datasets isList of 4
$ data : num [1:2500, 1:30] 1 0 1 1 1 0 1 1 1 1 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:30] "A01" "A02" "A03" "A04" ...
$ pars :'data.frame': 30 obs. of 4 variables:
..$ a1: num [1:30] 0.747 0.46 0.861 1.014 0.552 ...
..$ a2: num [1:30] 0.025 0.0097 0.0067 0.008 0.0204 0.0064 ...
..$ a3: num [1:30] 0.1428 0.0692 0.404 0.047 0.1482 ...
..$ d : num [1:30] 0.183 -0.192 -0.466 -0.434 -0.443 ...
$ mu : num [1:3] 0 0 0
$ sigma: num [1:3, 1:3] 0.167 0.236 0.289 0.236 0.334 ...
The dataset
data.reck75C2
is simulated using item parameters from Table 7.5 (p. 191). It contains items which are sensitive to only one dimension but individuals which have abilities in three uncorrelated dimensions. The format isList of 4
$ data : num [1:2500, 1:30] 0 0 1 1 1 0 0 1 1 1 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:30] "A01" "A02" "A03" "A04" ...
$ pars :'data.frame': 30 obs. of 4 variables:
..$ a1: num [1:30] 0.56 0.48 0.67 0.57 0.54 0.74 0.7 0.59 0.63 0.64 ...
..$ a2: num [1:30] 0.62 0.53 0.63 0.69 0.58 0.69 0.75 0.63 0.64 0.64 ...
..$ a3: num [1:30] 0.46 0.42 0.43 0.51 0.41 0.48 0.46 0.5 0.51 0.46 ...
..$ d : num [1:30] 0.1 0.06 -0.38 0.46 0.14 0.31 0.06 -1.23 0.47 1.06 ...
$ mu : num [1:3] 0 0 0
$ sigma: num [1:3, 1:3] 1 0 0 0 1 0 0 0 1
The dataset
data.reck78ExA
contains simulated item responses from Table 7.8 (p. 204 ff.). There are three item clusters and two ability dimensions. The format isList of 4
$ data : num [1:2500, 1:50] 0 1 1 0 1 0 0 0 0 0 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:50] "A01" "A02" "A03" "A04" ...
$ pars :'data.frame': 50 obs. of 3 variables:
..$ a1: num [1:50] 0.889 1.057 1.047 1.178 1.029 ...
..$ a2: num [1:50] 0.1399 0.0432 0.016 0.0231 0.2347 ...
..$ d : num [1:50] 0.2724 1.2335 -0.0918 -0.2372 0.8471 ...
$ mu : num [1:2] 0 0
$ sigma: num [1:2, 1:2] 1 0 0 1
The dataset
data.reck79ExB
contains simulated item responses from Table 7.9 (p. 207 ff.). There are three item clusters and three ability dimensions. The format isList of 4
$ data : num [1:2500, 1:50] 1 1 0 1 0 0 0 1 1 0 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:50] "A01" "A02" "A03" "A04" ...
$ pars :'data.frame': 50 obs. of 4 variables:
..$ a1: num [1:50] 0.895 1.032 1.036 1.163 1.022 ...
..$ a2: num [1:50] 0.052 0.132 0.144 0.13 0.165 ...
..$ a3: num [1:50] 0.0722 0.1923 0.0482 0.1321 0.204 ...
..$ d : num [1:50] 0.2724 1.2335 -0.0918 -0.2372 0.8471 ...
$ mu : num [1:3] 0 0 0
$ sigma: num [1:3, 1:3] 1 0 0 0 1 0 0 0 1
Source
Simulated datasets
References
Reckase, M. (2009). Multidimensional item response theory. New York: Springer. doi:10.1007/978-0-387-89976-3
Examples
## Not run:
#############################################################################
# EXAMPLE 1: data.reck21 dataset, Table 2.1, p. 45
#############################################################################
data(data.reck21)
dat <- data.reck21$dat # extract dataset
# items with zero guessing parameters
guess0 <- c( 1, 2, 3, 9,11,27,30,35,45,49,50 )
I <- ncol(dat)
#***
# Model 1: 3PL estimation using rasch.mml2
est.c <- est.a <- 1:I
est.c[ guess0 ] <- 0
mod1 <- sirt::rasch.mml2( dat, est.a=est.a, est.c=est.c, mmliter=300 )
summary(mod1)
#***
# Model 2: 3PL estimation using smirt
Q <- matrix(1,I,1)
mod2 <- sirt::smirt( dat, Qmatrix=Q, est.a="2PL", est.c=est.c, increment.factor=1.01)
summary(mod2)
#***
# Model 3: estimation in mirt package
library(mirt)
itemtype <- rep("3PL", I )
itemtype[ guess0 ] <- "2PL"
mod3 <- mirt::mirt(dat, 1, itemtype=itemtype, verbose=TRUE)
summary(mod3)
c3 <- unlist( coef(mod3) )[ 1:(4*I) ]
c3 <- matrix( c3, I, 4, byrow=TRUE )
# compare estimates of rasch.mml2, smirt and true parameters
round( cbind( mod1$item$c, mod2$item$c,c3[,3],data.reck21$pars$c ), 2 )
round( cbind( mod1$item$a, mod2$item$a.Dim1,c3[,1], data.reck21$pars$a ), 2 )
round( cbind( mod1$item$b, mod2$item$b.Dim1 / mod2$item$a.Dim1, - c3[,2] / c3[,1],
data.reck21$pars$b ), 2 )
#############################################################################
# EXAMPLE 2: data.reck61 dataset, Table 6.1, p. 153
#############################################################################
data(data.reck61DAT1)
dat <- data.reck61DAT1$data
#***
# Model 1: Exploratory factor analysis
#-- Model 1a: tam.fa in TAM
library(TAM)
mod1a <- TAM::tam.fa( dat, irtmodel="efa", nfactors=3 )
# varimax rotation
varimax(mod1a$B.stand)
# Model 1b: EFA in NOHARM (Promax rotation)
mod1b <- sirt::R2noharm( dat=dat, model.type="EFA", dimensions=3,
writename="reck61__3dim_efa", noharm.path="c:/NOHARM",dec=",")
summary(mod1b)
# Model 1c: EFA with noharm.sirt
mod1c <- sirt::noharm.sirt( dat=dat, dimensions=3 )
summary(mod1c)
plot(mod1c)
# Model 1d: EFA with 2 dimensions in noharm.sirt
mod1d <- sirt::noharm.sirt( dat=dat, dimensions=2 )
summary(mod1d)
plot(mod1d, efa.load.min=.2) # plot loadings of at least .20
#***
# Model 2: Confirmatory factor analysis
#-- Model 2a: tam.fa in TAM
dims <- c( rep(1,10), rep(3,10), rep(2,10) )
Qmatrix <- matrix( 0, nrow=30, ncol=3 )
Qmatrix[ cbind( 1:30, dims) ] <- 1
mod2a <- TAM::tam.mml.2pl( dat,Q=Qmatrix,
control=list( snodes=1000, QMC=TRUE, maxiter=200) )
summary(mod2a)
#-- Model 2b: smirt in sirt
mod2b <- sirt::smirt( dat,Qmatrix=Qmatrix, est.a="2PL", maxiter=20, qmcnodes=1000 )
summary(mod2b)
#-- Model 2c: rasch.mml2 in sirt
mod2c <- sirt::rasch.mml2( dat,Qmatrix=Qmatrix, est.a=1:30,
mmliter=200, theta.k=seq(-5,5,len=11) )
summary(mod2c)
#-- Model 2d: mirt in mirt
cmodel <- mirt::mirt.model("
F1=1-10
F2=21-30
F3=11-20
COV=F1*F2, F1*F3, F2*F3 " )
mod2d <- mirt::mirt(dat, cmodel, verbose=TRUE)
summary(mod2d)
coef(mod2d)
#-- Model 2e: CFA in NOHARM
# specify covariance pattern
P.pattern <- matrix( 1, ncol=3, nrow=3 )
P.init <- .4*P.pattern
diag(P.pattern) <- 0
diag(P.init) <- 1
# fix all entries in the loading matrix to 1
F.pattern <- matrix( 0, nrow=30, ncol=3 )
F.pattern[1:10,1] <- 1
F.pattern[21:30,2] <- 1
F.pattern[11:20,3] <- 1
F.init <- F.pattern
# estimate model
mod2e <- sirt::R2noharm( dat=dat, model.type="CFA", P.pattern=P.pattern,
P.init=P.init, F.pattern=F.pattern, F.init=F.init,
writename="reck61__3dim_cfa", noharm.path="c:/NOHARM",dec=",")
summary(mod2e)
#-- Model 2f: CFA with noharm.sirt
mod2f <- sirt::noharm.sirt( dat=dat, Fval=F.init, Fpatt=F.pattern,
Pval=P.init, Ppatt=P.pattern )
summary(mod2f)
#############################################################################
# EXAMPLE 3: DETECT analysis data.reck78ExA and data.reck79ExB
#############################################################################
data(data.reck78ExA)
data(data.reck79ExB)
#************************
# Example A
dat <- data.reck78ExA$data
#- estimate person score
score <- stats::qnorm( ( rowMeans( dat )+.5 ) / ( ncol(dat) + 1 ) )
#- extract item cluster
itemcluster <- substring( colnames(dat), 1, 1 )
#- confirmatory DETECT Item cluster
detectA <- sirt::conf.detect( data=dat, score=score, itemcluster=itemcluster )
## unweighted weighted
## DETECT 0.571 0.571
## ASSI 0.523 0.523
## RATIO 0.757 0.757
#- exploratory DETECT analysis
detect_explA <- sirt::expl.detect(data=dat, score, nclusters=10, N.est=nrow(dat)/2 )
## Optimal Cluster Size is 5 (Maximum of DETECT Index)
## N.Cluster N.items N.est N.val size.cluster DETECT.est ASSI.est
## 1 2 50 1250 1250 31-19 0.531 0.404
## 2 3 50 1250 1250 10-19-21 0.554 0.407
## 3 4 50 1250 1250 10-19-14-7 0.630 0.509
## 4 5 50 1250 1250 10-19-3-7-11 0.653 0.546
## 5 6 50 1250 1250 10-12-7-3-7-11 0.593 0.458
## 6 7 50 1250 1250 10-12-7-3-7-9-2 0.604 0.474
## 7 8 50 1250 1250 10-12-7-3-3-9-4-2 0.608 0.481
## 8 9 50 1250 1250 10-12-7-3-3-5-4-2-4 0.617 0.494
## 9 10 50 1250 1250 10-5-7-7-3-3-5-4-2-4 0.592 0.460
# cluster membership
cluster_membership <- detect_explA$itemcluster$cluster3
# Cluster 1:
colnames(dat)[ cluster_membership==1 ]
## [1] "A01" "A02" "A03" "A04" "A05" "A06" "A07" "A08" "A09" "A10"
# Cluster 2:
colnames(dat)[ cluster_membership==2 ]
## [1] "B11" "B12" "B13" "B14" "B15" "B16" "B17" "B18" "B19" "B20" "B21" "B22"
## [13] "B23" "B25" "B26" "B27" "B28" "B29" "B30"
# Cluster 3:
colnames(dat)[ cluster_membership==3 ]
## [1] "B24" "C31" "C32" "C33" "C34" "C35" "C36" "C37" "C38" "C39" "C40" "C41"
## [13] "C42" "C43" "C44" "C45" "C46" "C47" "C48" "C49" "C50"
#************************
# Example B
dat <- data.reck79ExB$data
#- estimate person score
score <- stats::qnorm( ( rowMeans( dat )+.5 ) / ( ncol(dat) + 1 ) )
#- extract item cluster
itemcluster <- substring( colnames(dat), 1, 1 )
#- confirmatory DETECT Item cluster
detectB <- sirt::conf.detect( data=dat, score=score, itemcluster=itemcluster )
## unweighted weighted
## DETECT 0.715 0.715
## ASSI 0.624 0.624
## RATIO 0.855 0.855
#- exploratory DETECT analysis
detect_explB <- sirt::expl.detect(data=dat, score, nclusters=10, N.est=nrow(dat)/2 )
## Optimal Cluster Size is 4 (Maximum of DETECT Index)
##
## N.Cluster N.items N.est N.val size.cluster DETECT.est ASSI.est
## 1 2 50 1250 1250 30-20 0.665 0.546
## 2 3 50 1250 1250 10-20-20 0.686 0.585
## 3 4 50 1250 1250 10-20-8-12 0.728 0.644
## 4 5 50 1250 1250 10-6-14-8-12 0.654 0.553
## 5 6 50 1250 1250 10-6-14-3-12-5 0.659 0.561
## 6 7 50 1250 1250 10-6-14-3-7-5-5 0.664 0.576
## 7 8 50 1250 1250 10-6-7-7-3-7-5-5 0.616 0.518
## 8 9 50 1250 1250 10-6-7-7-3-5-5-5-2 0.612 0.512
## 9 10 50 1250 1250 10-6-7-7-3-5-3-5-2-2 0.613 0.512
## End(Not run)