class.accuracy.rasch {sirt} | R Documentation |
Classification Accuracy in the Rasch Model
Description
This function computes the classification accuracy in the Rasch model for the maximum likelihood (person parameter) estimate according to the method of Rudner (2001).
Usage
class.accuracy.rasch(cutscores, b, meantheta, sdtheta, theta.l, n.sims=0)
Arguments
cutscores |
Vector of cut scores |
b |
Vector of item difficulties |
meantheta |
Mean of the trait distribution |
sdtheta |
Standard deviation of the trait distribution |
theta.l |
Discretized theta distribution |
n.sims |
Number of simulated persons in a data set. The default is 0 which means that no simulation is performed. |
Value
A list with following entries:
class.stats |
Data frame containing classification accuracy statistics. The
column |
class.prob |
Probability table of classification |
References
Rudner, L.M. (2001). Computing the expected proportions of misclassified examinees. Practical Assessment, Research & Evaluation, 7(14).
See Also
Classification accuracy of other IRT models can be obtained with the R package cacIRT.
Examples
#############################################################################
# EXAMPLE 1: Reading dataset
#############################################################################
data( data.read, package="sirt")
dat <- data.read
# estimate the Rasch model
mod <- sirt::rasch.mml2( dat )
# estimate classification accuracy (3 levels)
cutscores <- c( -1, .3 ) # cut scores at theta=-1 and theta=.3
sirt::class.accuracy.rasch( cutscores=cutscores, b=mod$item$b,
meantheta=0, sdtheta=mod$sd.trait,
theta.l=seq(-4,4,len=200), n.sims=3000)
## Cut Scores
## [1] -1.0 0.3
##
## WLE reliability (by simulation)=0.671
## WLE consistency (correlation between two parallel forms)=0.649
##
## Classification accuracy and consistency
## agree0 agree1 kappa consistency
## analytical 0.68 0.990 0.492 NA
## simulated 0.70 0.997 0.489 0.599
##
## Probability classification table
## Est_Class1 Est_Class2 Est_Class3
## True_Class1 0.136 0.041 0.001
## True_Class2 0.081 0.249 0.093
## True_Class3 0.009 0.095 0.294