| ccov.np {sirt} | R Documentation |
Nonparametric Estimation of Conditional Covariances of Item Pairs
Description
This function estimates conditional covariances of itempairs
(Stout, Habing, Douglas & Kim, 1996; Zhang & Stout,
1999a). The function is used for the estimation of the DETECT index.
The ccov.np function has the (default) option to smooth item response
functions (argument smooth) in the computation of conditional covariances
(Douglas, Kim, Habing, & Gao, 1998).
Usage
ccov.np(data, score, bwscale=1.1, thetagrid=seq(-3, 3, len=200),
progress=TRUE, scale_score=TRUE, adjust_thetagrid=TRUE, smooth=TRUE,
use_sum_score=FALSE, bias_corr=TRUE)
Arguments
data |
An |
score |
An ability estimate, e.g. the WLE |
bwscale |
Bandwidth factor for calculation of conditional covariance. The bandwidth
used in the estimation is |
thetagrid |
A vector which contains theta values where conditional covariances are evaluated. |
progress |
Display progress? |
scale_score |
Logical indicating whether |
adjust_thetagrid |
Logical indicating whether |
smooth |
Logical indicating whether smoothing should be applied for conditional covariance estimation |
use_sum_score |
Logical indicating whether sum score should be used. With this option, the bias corrected conditional covariance of Zhang and Stout (1999) is used. |
bias_corr |
Logical indicating whether bias correction (Zhang & Stout, 1999)
should be utilized if |
Note
This function is used in conf.detect and expl.detect.
References
Douglas, J., Kim, H. R., Habing, B., & Gao, F. (1998). Investigating local dependence with conditional covariance functions. Journal of Educational and Behavioral Statistics, 23(2), 129-151. doi:10.3102/10769986023002129
Stout, W., Habing, B., Douglas, J., & Kim, H. R. (1996). Conditional covariance-based nonparametric multidimensionality assessment. Applied Psychological Measurement, 20(4), 331-354. doi:10.1177/014662169602000403
Zhang, J., & Stout, W. (1999). Conditional covariance structure of generalized compensatory multidimensional items. Psychometrika, 64(2), 129-152. doi:10.1007/BF02294532
Examples
## Not run:
#############################################################################
# EXAMPLE 1: data.read | different settings for computing conditional covariance
#############################################################################
data(data.read, package="sirt")
dat <- data.read
#* fit Rasch model
mod <- sirt::rasch.mml2(dat)
score <- sirt::wle.rasch(dat=dat, b=mod$item$b)$theta
#* ccov with smoothing
cmod1 <- sirt::ccov.np(data=dat, score=score, bwscale=1.1)
#* ccov without smoothing
cmod2 <- sirt::ccov.np(data=dat, score=score, smooth=FALSE)
#- compare results
100*cbind( cmod1$ccov.table[1:6, "ccov"], cmod2$ccov.table[1:6, "ccov"])
## End(Not run)