brm-Methods {sirt} | R Documentation |
Functions for the Beta Item Response Model
Description
Functions for simulating and estimating the Beta item response model
(Noel & Dauvier, 2007). brm.sim
can be used for
simulating the model, brm.irf
computes the item response
function. The Beta item response model is estimated as a discrete
version to enable estimation in standard IRT software like
mirt or TAM packages.
Usage
# simulating the beta item response model
brm.sim(theta, delta, tau, K=NULL)
# computing the item response function of the beta item response model
brm.irf( Theta, delta, tau, ncat, thdim=1, eps=1E-10 )
Arguments
theta |
Ability vector of |
delta |
Vector of item difficulty parameters |
tau |
Vector item dispersion parameters |
K |
Number of discretized categories. The default is |
Theta |
Matrix of the ability vector |
ncat |
Number of categories |
thdim |
Theta dimension in the matrix |
eps |
Nuisance parameter which stabilize probabilities. |
Details
The discrete version of the beta item response model is defined as follows.
Assume that for item i
there are K
categories resulting in
values k=0,1,\dots,K-1
. Each value k
is associated with a
corresponding the transformed value in [0,1]
, namely
q (k)=1/(2 \cdot K), 1/(2 \cdot K) + 1/K, \ldots, 1 - 1/(2 \cdot K)
.
The item response model is defined as
P( X_{pi}=x_{pi} | \theta_p) \propto
q( x_{pi} )^{ m_{pi} - 1 } [ 1- q( x_{pi} ) ]^{ n_{pi} - 1 }
This density is a discrete version of a Beta distribution with
shape parameters m_{pi}
and n_{pi}
. These parameters are
defined as
m_{pi}=\mathrm{exp} \left[ ( \theta_p - \delta_i + \tau_i ) / 2 \right]
\qquad \mbox{and} \qquad
n_{pi}=\mathrm{exp} \left[ ( - \theta_p + \delta_i + \tau_i ) / 2 \right]
The item response function can also be formulated as
\mathrm{log} \left[ P( X_{pi}=x_{pi} | \theta_p) \right] \propto
( m_{pi} - 1 ) \cdot \mathrm{log} [ q( x_{pi} ) ] +
( n_{pi} - 1 ) \cdot \mathrm{log} [ 1- q( x_{pi} ) ]
The item parameters can be reparameterized as
a_{i}=\mathrm{exp} \left[ ( - \delta_i + \tau_i ) / 2 \right]
and
b_{i}=\mathrm{exp} \left[ ( \delta_i + \tau_i ) / 2 \right]
.
Then, the original item parameters can be retrieved by
\tau_i=\mathrm{log} ( a_i b_i)
and
\delta_i=\mathrm{log} ( b_i / a_i)
.
Using \gamma _p=\mathrm{exp} ( \theta_p / 2)
, we obtain
\mathrm{log} \left[ P( X_{pi}=x_{pi} | \theta_p) \right] \propto
a_{i} \gamma_p \cdot \mathrm{log} [ q( x_{pi} ) ] +
b_i / \gamma_p \cdot \mathrm{log} [ 1- q( x_{pi} ) ] -
\left[ \mathrm{log} q( x_{pi} ) + \mathrm{log} [ 1- q( x_{pi} ) ] \right]
This formulation enables the specification of the Beta item response
model as a structured latent class model
(see TAM::tam.mml.3pl
;
Example 1).
See Smithson and Verkuilen (2006) for motivations for treating continuous indicators not as normally distributed variables.
Value
A simulated dataset of item responses if brm.sim
is applied.
A matrix of item response probabilities if brm.irf
is applied.
References
Gruen, B., Kosmidis, I., & Zeileis, A. (2012). Extended Beta regression in R: Shaken, stirred, mixed, and partitioned. Journal of Statistical Software, 48(11), 1-25. doi:10.18637/jss.v048.i11
Noel, Y., & Dauvier, B. (2007). A beta item response model for continuous bounded responses. Applied Psychological Measurement, 31(1), 47-73. doi:10.1177/0146621605287691
Smithson, M., & Verkuilen, J. (2006). A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychological Methods, 11(1), 54-71. doi: 10.1037/1082-989X.11.1.54
See Also
See also the betareg package for fitting Beta regression regression models in R (Gruen, Kosmidis & Zeileis, 2012).
Examples
#############################################################################
# EXAMPLE 1: Simulated data beta response model
#############################################################################
#*** (1) Simulation of the beta response model
# Table 3 (p. 65) of Noel and Dauvier (2007)
delta <- c( -.942, -.649, -.603, -.398, -.379, .523, .649, .781, .907 )
tau <- c( .382, .166, 1.799, .615, 2.092, 1.988, 1.899, 1.439, 1.057 )
K <- 5 # number of categories for discretization
N <- 500 # number of persons
I <- length(delta) # number of items
set.seed(865)
theta <- stats::rnorm( N )
dat <- sirt::brm.sim( theta=theta, delta=delta, tau=tau, K=K)
psych::describe(dat)
#*** (2) some preliminaries for estimation of the model in mirt
#*** define a mirt function
library(mirt)
Theta <- matrix( seq( -4, 4, len=21), ncol=1 )
# compute item response function
ii <- 1 # item ii=1
b1 <- sirt::brm.irf( Theta=Theta, delta=delta[ii], tau=tau[ii], ncat=K )
# plot item response functions
graphics::matplot( Theta[,1], b1, type="l" )
#*** defining the beta item response function for estimation in mirt
par <- c( 0, 1, 1)
names(par) <- c( "delta", "tau","thdim")
est <- c( TRUE, TRUE, FALSE )
names(est) <- names(par)
brm.icc <- function( par, Theta, ncat ){
delta <- par[1]
tau <- par[2]
thdim <- par[3]
probs <- sirt::brm.irf( Theta=Theta, delta=delta, tau=tau, ncat=ncat,
thdim=thdim)
return(probs)
}
name <- "brm"
# create item response function
brm.itemfct <- mirt::createItem(name, par=par, est=est, P=brm.icc)
#*** define model in mirt
mirtmodel <- mirt::mirt.model("
F1=1-9
" )
itemtype <- rep("brm", I )
customItems <- list("brm"=brm.itemfct)
# define parameters to be estimated
mod1.pars <- mirt::mirt(dat, mirtmodel, itemtype=itemtype,
customItems=customItems, pars="values")
## Not run:
#*** (3) estimate beta item response model in mirt
mod1 <- mirt::mirt(dat,mirtmodel, itemtype=itemtype, customItems=customItems,
pars=mod1.pars, verbose=TRUE )
# model summaries
print(mod1)
summary(mod1)
coef(mod1)
# estimated coefficients and comparison with simulated data
cbind( sirt::mirt.wrapper.coef( mod1 )$coef, delta, tau )
mirt.wrapper.itemplot(mod1,ask=TRUE)
#---------------------------
# estimate beta item response model in TAM
library(TAM)
# define the skill space: standard normal distribution
TP <- 21 # number of theta points
theta.k <- diag(TP)
theta.vec <- seq( -6,6, len=TP)
d1 <- stats::dnorm(theta.vec)
d1 <- d1 / sum(d1)
delta.designmatrix <- matrix( log(d1), ncol=1 )
delta.fixed <- cbind( 1, 1, 1 )
# define design matrix E
E <- array(0, dim=c(I,K,TP,2*I + 1) )
dimnames(E)[[1]] <- items <- colnames(dat)
dimnames(E)[[4]] <- c( paste0( rep( items, each=2 ),
rep( c("_a","_b" ), I) ), "one" )
for (ii in 1:I){
for (kk in 1:K){
for (tt in 1:TP){
qk <- (2*(kk-1)+1)/(2*K)
gammap <- exp( theta.vec[tt] / 2 )
E[ii, kk, tt, 2*(ii-1) + 1 ] <- gammap * log( qk )
E[ii, kk, tt, 2*(ii-1) + 2 ] <- 1 / gammap * log( 1 - qk )
E[ii, kk, tt, 2*I+1 ] <- - log(qk) - log( 1 - qk )
}
}
}
gammaslope.fixed <- cbind( 2*I+1, 1 )
gammaslope <- exp( rep(0,2*I+1) )
# estimate model in TAM
mod2 <- TAM::tam.mml.3pl(resp=dat, E=E,control=list(maxiter=100),
skillspace="discrete", delta.designmatrix=delta.designmatrix,
delta.fixed=delta.fixed, theta.k=theta.k, gammaslope=gammaslope,
gammaslope.fixed=gammaslope.fixed, notA=TRUE )
summary(mod2)
# extract original tau and delta parameters
m1 <- matrix( mod2$gammaslope[1:(2*I) ], ncol=2, byrow=TRUE )
m1 <- as.data.frame(m1)
colnames(m1) <- c("a","b")
m1$delta.TAM <- log( m1$b / m1$a)
m1$tau.TAM <- log( m1$a * m1$b )
# compare estimated parameter
m2 <- cbind( sirt::mirt.wrapper.coef( mod1 )$coef, delta, tau )[,-1]
colnames(m2) <- c( "delta.mirt", "tau.mirt", "thdim","delta.true","tau.true" )
m2 <- cbind(m1,m2)
round( m2, 3 )
## End(Not run)