Q3 {sirt} | R Documentation |
Estimation of the
Statistic (Yen, 1984)
Description
This function estimates the statistic according to Yen (1984).
The statistic
is calculated for every item pair
which is the correlation between item residuals after fitting the Rasch model.
Usage
Q3(dat, theta, b, progress=TRUE)
Arguments
dat |
An |
theta |
Vector of length |
b |
Vector of length |
progress |
Should iteration progress be displayed? |
Value
A list with following entries
q3.matrix |
An |
q3.long |
Just the |
expected |
An |
residual |
An |
Q3.stat |
Vector with descriptive statistics of |
References
Yen, W. M. (1984). Effects of local item dependence on the fit and equating performance of the three-parameter logistic model. Applied Psychological Measurement, 8, 125-145.
See Also
For the estimation of the average statistic within testlets see
Q3.testlet
.
For modeling testlet effects see mcmc.3pno.testlet
.
For handling local dependencies in IRT models see
rasch.copula2
, rasch.pml3
or
rasch.pairwise.itemcluster
.
Examples
#############################################################################
# EXAMPLE 1: data.read. The 12 items are arranged in 4 testlets
#############################################################################
data(data.read)
# estimate the Rasch model
mod <- sirt::rasch.mml2( data.read)
# estmate WLEs
mod.wle <- sirt::wle.rasch( dat=data.read, b=mod$item$b )
# calculate Yen's Q3 statistic
mod.q3 <- sirt::Q3( dat=data.read, theta=mod.wle$theta, b=mod$item$b )
## Yen's Q3 Statistic based on an estimated theta score
## *** 12 Items | 66 item pairs
## *** Q3 Descriptives
## M SD Min 10% 25% 50% 75% 90% Max
## -0.085 0.110 -0.261 -0.194 -0.152 -0.107 -0.051 0.041 0.412
# plot Q3 statistics
I <- ncol(data.read)
image( 1:I, 1:I, mod.q3$q3.matrix, col=gray( 1 - (0:32)/32),
xlab="Item", ylab="Item")
abline(v=c(5,9)) # borders for testlets
abline(h=c(5,9))
## Not run:
# obtain Q3 statistic from modelfit.sirt function which is based on the
# posterior distribution of theta and not on observed values
fitmod <- sirt::modelfit.sirt( mod )
# extract Q3 statistic
q3stat <- fitmod$itempairs$Q3
## > summary(q3stat)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.21760 -0.11590 -0.07280 -0.05545 -0.01220 0.44710
## > sd(q3stat)
## [1] 0.1101451
## End(Not run)