pairwise {siplab} | R Documentation |
Compute Pairwise Competition Indices
Description
This function computes competition indices based on pairs of plants, ignoring higher-order interactions.
Usage
pairwise(plants, maxN = NULL, maxR = NULL, select = NULL, selpar =
NULL, kernel, kerpar = NULL)
Arguments
plants |
A spatstat point pattern object (class |
maxN |
Maximum number of nearest neighbors to include as potential competitors. Default is NULL (no restriction). |
maxR |
Maximum radius to search for potential competitors. Default is NULL (no restriction). |
select |
Optional user-supplied selection function for choosing competitors. Must take arguments |
selpar |
Parameter(s) for |
kernel |
Competition kernel function for computing the effect of competitor |
kerpar |
Parameter(s) for |
Details
Traditionally, the competition index for a subject plant i
is obtained in two stages: (1) Choose a set of competitors of i
by some selection rule. (2) Compute a measure of the effect of each competitor j
on plant i
, and add over j
. This effect of j
on i
is normally a function of the sizes of both plants and of the distance between them, which we call a competition kernel. The kernel may depend on other plant attributes, like species, and in some rare instances on the distance ranks or on the number of competitors. Conceptually, the first stage is not strictly necessary, it could be replaced by specifying zero kernel values (the effect of the selection is usually to truncate the kernel function beyond some distance). However, a separate selection rule may be more transparent, and may reduce the computational effort in searching for neighbors.
Some simple selection rules can be implemented by giving a value to maxN
and/or maxR
. In any case, reasonable limits on these variables may be advisable for reducing computation.
More complex rules can be specified by the select
function, with parameters in selpar
. See select
for examples. If more than one of maxN
, maxR
or select
are given, the intersection of the selection criteria is used.
Kernel computation is specified by the kernel
function and the parameters in kerpar
. See kernel
for examples.
Value
Returns the input point pattern plants
, with the marks replaced by a data frame containing the original marks followed by the competition index in a column named cindex
.
Note
Requires the spatstat package.
Author(s)
Oscar García.
References
https://github.com/ogarciav/siplab
García, O. “Siplab, a spatial individual-based plant modelling system”. Computational Ecology and Software 4(4), 215-222. 2014.
See Also
Examples
# Hegyi (1974) index (no distance offset, as usual)
summary(pairwise(finpines, maxR = 6, kernel=powers_ker))