haystack_continuous_highD {singleCellHaystack} | R Documentation |
The main Haystack function, for higher-dimensional spaces and continuous expression levels.
Description
The main Haystack function, for higher-dimensional spaces and continuous expression levels.
Usage
haystack_continuous_highD(
x,
expression,
grid.points = 100,
weights.advanced.Q = NULL,
dir.randomization = NULL,
scale = TRUE,
grid.method = "centroid",
randomization.count = 100,
n.genes.to.randomize = 100,
selection.method.genes.to.randomize = "heavytails",
grid.coord = NULL,
spline.method = "ns"
)
Arguments
x |
Coordinates of cells in a 2D or higher-dimensional space. Rows represent cells, columns the dimensions of the space. |
expression |
a matrix with expression data of genes (rows) in cells (columns) |
grid.points |
An integer specifying the number of centers (grid points) to be used for estimating the density distributions of cells. Default is set to 100. |
weights.advanced.Q |
(Default: NULL) Optional weights of cells for calculating a weighted distribution of expression. |
dir.randomization |
If NULL, no output is made about the random sampling step. If not NULL, files related to the randomizations are printed to this directory. |
scale |
Logical (default=TRUE) indicating whether input coordinates in x should be scaled to mean 0 and standard deviation 1. |
grid.method |
The method to decide grid points for estimating the density in the high-dimensional space. Should be "centroid" (default) or "seeding". |
randomization.count |
Number of randomizations to use. Default: 100 |
n.genes.to.randomize |
Number of genes to use in randomizations. Default: 100 |
selection.method.genes.to.randomize |
Method used to select genes for randomization. |
grid.coord |
matrix of grid coordinates. |
spline.method |
Method to use for fitting splines "ns" (default): natural splines, "bs": B-splines. |
Value
An object of class "haystack", including the results of the analysis, and the coordinates of the grid points used to estimate densities.
Examples
# using the toy example of the singleCellHaystack package
# running haystack
res <- haystack(dat.tsne, dat.expression)
# list top 10 biased genes
show_result_haystack(res, n=10)