| find_best_fit {simukde} | R Documentation | 
Find The Best Fitting Distribution
Description
It finds the best fitting distribution from supported univariate continuous distributions for given data.
Usage
find_best_fit(
  x,
  positive = FALSE,
  plot = TRUE,
  legend.pos = "topright",
  dlc = NULL,
  dlw = 1,
  ...
)
Arguments
| x | a numeric vector; data. | 
| positive | a logical constant; distribution type. | 
| plot | a logical constant. If  | 
| legend.pos | a character string. Indicates the legend position and must be one of "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright" (default), "right" and "center". | 
| dlc | a vector; probability density line colors for supported (up to 7) distributions. If unspecified, the rainbow color palette will be used. | 
| dlw | a numerical constant; probability density line width. | 
| ... | Further arguments and parameters for the function  | 
Details
This function is supported following univariate distributions:
- for positive random variables: Log normal, Exponential, Gamma and Weibull. 
- for all random variables: Normal, Cauchy, Log normal, Exponential, Gamma, Weibull and Uniform. 
Legends of the plot are ordered by p-values of the test.
Value
A list containing the following items:
- distribution
- the name of the best fitting distribution. 
- ks.statistic
- the Kolmogorov-Smirnov test statistic for the distribution. 
- p.value
- the p-value of the test. 
- summary
- results similar to above for other distributions. 
- x
- given data. 
- n
- the sample size. 
References
- William J. Conover (1971). Practical Nonparametric Statistics. New York: John Wiley & Sons. Pages 295–301. 
- Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer. 
See Also
Examples
petal.length <- datasets::iris$Petal.Length[datasets::iris$Species == "setosa"]
simukde::find_best_fit(x = petal.length, positive = TRUE)