onekmeans {simuclustfactor} | R Documentation |
One-run of the K-means clustering technique
Description
Initializes centroids based on a given membership function matrix or randomly. Iterate once over the input data to update the membership function matrix assigning objects to the closest centroids.
Usage
onekmeans(Y_i_qr, G, U_i_g = NULL, seed = NULL)
Arguments
Y_i_qr |
Input data to group/cluster. |
G |
Number of clusters to find. |
U_i_g |
Initial membership matrix for the I objects. |
seed |
Seed for random values generation. |
Value
updated membership matrix U_i_g.
References
Oti EU, Olusola MO, Eze FC, Enogwe SU (2021). “Comprehensive Review of K-Means Clustering Algorithms.” International Journal of Advances in Scientific Research and Engineering (IJASRE), ISSN:2454-8006, DOI: 10.31695/IJASRE, 7(8), 64–69. doi:10.31695/IJASRE.2021.34050, https://ijasre.net/index.php/ijasre/article/view/1301.
Examples
X_i_jk = generate_dataset(seed=0)$X_i_jk
onekmeans(X_i_jk, G=5)
[Package simuclustfactor version 0.0.3 Index]