| deriv_arma11 {simts} | R Documentation | 
Analytic D matrix for ARMA(1,1) process
Description
Obtain the first derivative of the ARMA(1,1) process.
Usage
deriv_arma11(phi, theta, sigma2, tau)
Arguments
phi | 
 A   | 
theta | 
 A   | 
sigma2 | 
 A   | 
tau | 
 A   | 
Value
A matrix with:
The first column containing the partial derivative with respect to
\phi;The second column containing the partial derivative with respect to
\theta;The third column contains the partial derivative with respect to
\sigma ^2.
Process Haar WV First Derivative
Taking the derivative with respect to \phi yields:
 \frac{\partial }{{\partial \phi }}\nu _j^2\left( {\phi ,\theta ,{\sigma ^2}} \right) = \frac{{2{\sigma ^2}}}{{{{(\phi  - 1)}^4}{{(\phi  + 1)}^2}\tau _j^2}}\left( \begin{array}{cc}
&{\tau _j}\left( { - {{(\theta  + 1)}^2}(\phi  - 1){{(\phi  + 1)}^2} - 2\left( {{\phi ^2} - 1} \right)(\theta  + \phi )(\theta \phi  + 1){\phi ^{\frac{{{\tau _j}}}{2} - 1}} + \left( {{\phi ^2} - 1} \right)(\theta \phi  + 1)(\theta  + \phi ){\phi ^{{\tau _j} - 1}}} \right) \\
&- \left( {{\theta ^2}((3\phi  + 2)\phi  + 1) + 2\theta \left( {\left( {{\phi ^2} + \phi  + 3} \right)\phi  + 1} \right) + (3\phi  + 2)\phi  + 1} \right)\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right) \\ 
\end{array}  \right)
Taking the derivative with respect to \theta yields:
\frac{\partial }{{\partial \theta }}\nu _j^2\left( {\phi ,\theta ,{\sigma ^2}} \right) = \frac{{2{\sigma ^2}\left( {(\theta  + 1)\left( {{\phi ^2} - 1} \right){\tau _j} + \left( {2\theta \phi  + {\phi ^2} + 1} \right)\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right)} \right)}}{{{{(\phi  - 1)}^3}(\phi  + 1)\tau _j^2}}
Taking the derivative with respect to \sigma^2 yields:
\frac{\partial }{{\partial \sigma ^2 }}\nu _j^2\left( {\phi ,\theta ,{\sigma ^2}} \right) = \frac{2 \sigma ^2 \left(\left(\phi ^2-1\right) \tau _j+2 \phi  \left(\phi ^{\tau _j}-4 \phi ^{\frac{\tau _j}{2}}+3\right)\right)}{(\phi -1)^3 (\phi +1) \tau _j^2}
Author(s)
James Joseph Balamuta (JJB)