| deriv_ar1 {simts} | R Documentation | 
Analytic D matrix for AR(1) process
Description
Obtain the first derivative of the AR(1) process.
Usage
deriv_ar1(phi, sigma2, tau)
Arguments
phi | 
 A   | 
sigma2 | 
 A   | 
tau | 
 A   | 
Value
A matrix with the first column containing the partial derivative with respect to \phi 
and the second column contains the partial derivative with respect to \sigma ^2
Process Haar WV First Derivative
Taking the derivative with respect to \phi yields:
\frac{\partial }{{\partial \phi }}\nu _j^2\left( {\phi ,{\sigma ^2}} \right) = \frac{{2{\sigma ^2}\left( {\left( {{\phi ^2} - 1} \right){\tau _j}\left( { - 2{\phi ^{\frac{{{\tau _j}}}{2}}} + {\phi ^{{\tau _j}}} - \phi  - 1} \right) - \left( {\phi \left( {3\phi  + 2} \right) + 1} \right)\left( { - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + {\phi ^{{\tau _j}}} + 3} \right)} \right)}}{{{{\left( {\phi  - 1} \right)}^4}{{\left( {\phi  + 1} \right)}^2}\tau _j^2}}
Taking the derivative with respect to \sigma ^2 yields:
\frac{\partial }{{\partial {\sigma ^2}}}\nu _j^2\left( {\phi ,{\sigma ^2}} \right) = \frac{{\left( {{\phi ^2} - 1} \right){\tau _j} + 2\phi \left( { - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + {\phi ^{{\tau _j}}} + 3} \right)}}{{{{\left( {\phi  - 1} \right)}^3}\left( {\phi  + 1} \right)\tau _j^2}}
Author(s)
James Joseph Balamuta (JJB)