corr_analysis {simts} | R Documentation |
Correlation Analysis Functions
Description
Correlation Analysis function computes and plots both empirical ACF and PACF
of univariate time series.
Usage
corr_analysis(
x,
lag.max = NULL,
type = "correlation",
demean = TRUE,
show.ci = TRUE,
alpha = 0.05,
plot = TRUE,
...
)
Arguments
x |
A vector or "ts" object (of length N>1 ).
|
lag.max |
A integer indicating the maximum lag up to which to compute the ACF and PACF functions.
|
type |
A character string giving the type of acf to be computed. Allowed values are "correlation" (the default) and "covariance".
|
demean |
A bool indicating whether the data should be detrended (TRUE ) or not (FALSE ). Defaults to TRUE .
|
show.ci |
A bool indicating whether to compute and show the confidence region. Defaults to TRUE .
|
alpha |
A double indicating the level of significance for the confidence interval. By default alpha = 0.05 which gives a 1 - alpha = 0.95 confidence interval.
|
plot |
A bool indicating whether a plot of the computed quantities should be produced. Defaults to TRUE .
|
... |
Additional parameters.
|
Value
Two array
objects (ACF and PACF) of dimension N×S×S
.
Author(s)
Yunxiang Zhang
Examples
# Estimate both the ACF and PACF functions
corr_analysis(datasets::AirPassengers)
[Package
simts version 0.2.2
Index]