| arma11_to_wv {simts} | R Documentation | 
ARMA(1,1) to WV
Description
This function computes the WV (haar) of an Autoregressive Order 1 - Moving Average Order 1 (ARMA(1,1)) process.
Usage
arma11_to_wv(phi, theta, sigma2, tau)
Arguments
phi | 
 A   | 
theta | 
 A   | 
sigma2 | 
 A   | 
tau | 
 A   | 
Details
This function is significantly faster than its generalized counter part
arma_to_wv
Value
A vec containing the wavelet variance of the ARMA(1,1) process.
Process Haar Wavelet Variance Formula
The Autoregressive Order 1 and Moving Average Order 1 (ARMA(1,1)) process has a Haar Wavelet Variance given by:
\nu _j^2\left( {\phi ,\theta ,{\sigma ^2}} \right) =  - \frac{{2{\sigma ^2}\left( { - \frac{1}{2}{{(\theta  + 1)}^2}\left( {{\phi ^2} - 1} \right){\tau _j} - (\theta  + \phi )(\theta \phi  + 1)\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right)} \right)}}{{{{(\phi  - 1)}^3}(\phi  + 1)\tau _j^2}}