distributions {simstudy} | R Documentation |
Distributions for Data Definitions
Description
This help file describes the distributions used for data creation in
simstudy
.
Arguments
formula |
Desired mean as a Number or an R expression for mean as a
String. Variables defined via |
variance |
Number. Default is |
link |
String identifying the link function to be used. Default is
|
Details
For details about the statistical distributions please see stats::distributions, any non-statistical distributions will be explained below. Required variables and expected pattern for each distribution can be found in this table:
name | formula | format | variance | link |
beta | mean | String or Number | dispersion value | identity or logit |
binary | probability for 1 | String or Number | NA | identity, log, or logit |
binomial | probability of success | String or Number | number of trials | identity, log, or logit |
categorical | probabilities | p_1;p_2;..;p_n | category labels: a;b;c , 50;130;20 | identity or logit |
custom | name of function | String | arguments | identity |
exponential | mean (lambda) | String or Number | NA | identity or log |
gamma | mean | String or Number | dispersion value | identity or log |
mixture | formula | x_1 |p_1 + x_2 |p_2 ... x_n | p_n | NA | NA |
negBinomial | mean | String or Number | dispersion value | identity or log |
nonrandom | formula | String or Number | NA | NA |
normal | mean | String or Number | variance | NA |
noZeroPoisson | mean | String or Number | NA | identity or log |
poisson | mean | String or Number | NA | identity or log |
trtAssign | ratio | r_1;r_2;..;r_n | stratification | identity or nonbalanced |
uniform | range | from;to | NA | NA |
uniformInt | range | from;to | NA | NA |
Mixture
The mixture distribution makes it possible to mix to
previously defined distributions/variables. Each variable that should be
part of the new distribution x_1,...,X_n
is assigned a probability
p_1,...,p_n
. For more information see
rdatagen.net.
Examples
ext_var <- 2.9
def <- defData(varname = "external", formula = "3 + log(..ext_var)", variance = .5)
def
genData(5, def)