setPopulation {simsem} | R Documentation |
Set the data generation population model underlying an object
Description
This function will set the data generation population model to be an appropriate one. If the appropriate data generation model is specified, the additional features can be seen in summary
or summaryParam
functions on the target object, such as bias in parameter estimates or percentage coverage.
Usage
setPopulation(target, population)
Arguments
target |
The result object that you wish to set the data generation population model ( |
population |
The population parameters specified in the |
Value
The target object that is changed the parameter.
Author(s)
Sunthud Pornprasertmanit (psunthud@gmail.com)
See Also
-
SimResult
for result object
Examples
# See each class for an example.
## Not run:
# Data generation model
loading <- matrix(0, 7, 3)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loading[1:7, 3] <- NA
loadingVal <- matrix(0, 7, 3)
loadingVal[1:3, 1] <- "runif(1, 0.5, 0.7)"
loadingVal[4:6, 2] <- "runif(1, 0.5, 0.7)"
loadingVal[1:6, 3] <- "runif(1, 0.3, 0.5)"
loadingVal[7, 3] <- 1
loading.mis <- matrix("runif(1, -0.2, 0.2)", 7, 3)
loading.mis[is.na(loading)] <- 0
loading.mis[,3] <- 0
loading.mis[7,] <- 0
LY <- bind(loading, loadingVal, misspec=loading.mis)
RPS <- binds(diag(3))
path <- matrix(0, 3, 3)
path[2, 1] <- NA
BE <- bind(path, "runif(1, 0.3, 0.5)")
RTE <- binds(diag(7))
VY <- bind(c(rep(NA, 6), 0), c(rep(1, 6), ""))
datamodel <- model(LY=LY, RPS=RPS, BE=BE, RTE=RTE, VY=VY, modelType="SEM")
# Data analysis model
loading <- matrix(0, 7, 3)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loading[7, 3] <- NA
path <- matrix(0, 3, 3)
path[2, 1] <- NA
path[1, 3] <- NA
path[2, 3] <- NA
errorCov <- diag(NA, 7)
errorCov[7, 7] <- 0
facCov <- diag(3)
analysis <- estmodel(LY=loading, BE=path, TE=errorCov, PS=facCov, modelType="SEM",
indLab=paste("y", 1:7, sep=""))
# In reality, more than 10 replications are needed.
Output <- sim(10, n=200, analysis, generate=datamodel)
# Population
loadingVal <- matrix(0, 7, 3)
loadingVal[1:3, 1] <- 0.6
loadingVal[4:6, 2] <- 0.6
loadingVal[7, 3] <- 1
LY <- bind(loading, loadingVal)
pathVal <- matrix(0, 3, 3)
pathVal[2, 1] <- 0.4
pathVal[1, 3] <- 0.4
pathVal[2, 3] <- 0.4
BE <- bind(path, pathVal)
PS <- binds(facCov)
errorCovVal <- diag(0.64, 7)
errorCovVal[7, 7] <- 0
TE <- binds(errorCov, errorCovVal)
population <- model(LY=LY, PS=PS, BE=BE, TE=TE, modelType="SEM")
# Set up the new population
Output2 <- setPopulation(Output, population)
# This summary will contain the bias information
summary(Output2)
## End(Not run)
[Package simsem version 0.5-16 Index]