plotCutoffNonNested {simsem} | R Documentation |
Plot sampling distributions of the differences in fit indices between non-nested models with fit indices cutoffs
Description
This function will plot sampling distributions of the differences in fit indices between non-nested models. The users may add cutoffs by specifying the alpha
level.
Usage
plotCutoffNonNested(dat1Mod1, dat1Mod2, dat2Mod1=NULL, dat2Mod2=NULL,
alpha=0.05, cutoff = NULL, usedFit = NULL, useContour = T, onetailed=FALSE)
Arguments
dat1Mod1 |
|
dat1Mod2 |
|
dat2Mod1 |
|
dat2Mod2 |
|
alpha |
A priori alpha level |
cutoff |
A priori cutoffs for fit indices, saved in a vector |
usedFit |
Vector of names of fit indices that researchers wish to plot the sampling distribution. |
useContour |
If there are two of sample size, percent completely at random, and percent missing at random are varying, the |
onetailed |
If |
Value
NONE. Only plot the fit indices distributions.
Author(s)
Sunthud Pornprasertmanit (psunthud@gmail.com)
See Also
-
SimResult
for simResult that used in this function. -
getCutoffNonNested
to find the difference in fit indices cutoffs for non-nested model comparison
Examples
## Not run:
# Model A: Factor 1 on Items 1-3 and Factor 2 on Items 4-8
loading.A <- matrix(0, 8, 2)
loading.A[1:3, 1] <- NA
loading.A[4:8, 2] <- NA
LY.A <- bind(loading.A, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, "runif(1, 0.7, 0.9)")
RTE <- binds(diag(8))
CFA.Model.A <- model(LY = LY.A, RPS = RPS, RTE = RTE, modelType="CFA")
# Model B: Factor 1 on Items 1-4 and Factor 2 on Items 5-8
loading.B <- matrix(0, 8, 2)
loading.B[1:4, 1] <- NA
loading.B[5:8, 2] <- NA
LY.B <- bind(loading.B, 0.7)
CFA.Model.B <- model(LY = LY.B, RPS = RPS, RTE = RTE, modelType="CFA")
# The actual number of replications should be greater than 10.
Output.A.A <- sim(10, n=500, model=CFA.Model.A, generate=CFA.Model.A)
Output.A.B <- sim(10, n=500, model=CFA.Model.B, generate=CFA.Model.A)
Output.B.A <- sim(10, n=500, model=CFA.Model.A, generate=CFA.Model.B)
Output.B.B <- sim(10, n=500, model=CFA.Model.B, generate=CFA.Model.B)
# Plot cutoffs for both model A and model B
plotCutoffNonNested(Output.A.A, Output.A.B, Output.B.A, Output.B.B)
# Plot cutoffs for the model A only
plotCutoffNonNested(Output.A.A, Output.A.B)
# Plot cutoffs for the model A with one-tailed test
plotCutoffNonNested(Output.A.A, Output.A.B, onetailed=TRUE)
## End(Not run)