| inspect {simsem} | R Documentation |
Extract information from a simulation result
Description
Extract information from a simulation result
Arguments
object |
The target |
what |
The target component to be extracted. Please see details below. |
improper |
Specify whether to include the information from the replications with improper solutions |
nonconverged |
Specify whether to include the information from the nonconvergent replications |
Details
Here are the list of information that can be specified in the what argument. The items starting with * are the information that the improper and nonconverged arguments are not applicable.
*
"modeltype": The type of the simulation result*
"nrep": The number of overall replications, including converged and nonconverged replications-
"param": Parameter values (equivalent to thegetPopulationfunction) -
"stdparam": Standardized parameter values (equivalent to thegetPopulationfunction withstd = TRUE) -
"coef": Parameter estimates (equivalent to thecoefmethod) -
"se": Standard errors -
"fit": Fit indices -
"misspec": Misspecified parameter values -
"popfit": Population misfit -
"fmi1": Fraction missings type 1 -
"fmi2": Fraction missings type 2 -
"std": Standardized Parameter Estimates -
"stdse": Standard Errors of Standardized Values -
"cilower": Lower bounds of confidence intervals -
"ciupper": Upper bounds of confidence intervals -
"ciwidth": Widths of confidence intervals *
"seed": Seed number (equivalent to thesummarySeedfunction)-
"ngroup": Sample size of each group -
"ntotal": Total sample size -
"mcar": Percent missing completely at random -
"mar": Percent missing at random -
"extra": Extra output from theoutfunargument from thesimfunction) *
"time": Time elapsed in running the simulation (equivalent to thesummaryTimefunction)*
"converged": Convergence of each replication
Value
The target information depending on the what argument
Author(s)
Sunthud Pornprasertmanit (psunthud@gmail.com)
See Also
SimResult for the object input
Examples
## Not run:
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
RTE <- binds(diag(6))
VY <- bind(rep(NA,6),2)
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")
# In reality, more than 5 replications are needed.
Output <- sim(5, CFA.Model, n=200)
inspect(Output, "coef")
inspect(Output, "param")
inspect(Output, "se", improper = TRUE, nonconverged = TRUE)
## End(Not run)