getPowerFitNested {simsem} | R Documentation |
Find power in rejecting nested models based on the differences in fit indices
Description
Find the proportion of the difference in fit indices that indicate worse fit than a specified (or internally derived) cutoffs.
Usage
getPowerFitNested(altNested, altParent, cutoff = NULL, nullNested = NULL,
nullParent = NULL, revDirec = FALSE, usedFit = NULL, alpha = 0.05, nVal = NULL,
pmMCARval = NULL, pmMARval = NULL, condCutoff = TRUE, df = 0)
Arguments
altNested |
|
altParent |
|
cutoff |
A vector of priori cutoffs for fit indices. The |
nullNested |
The |
nullParent |
The |
revDirec |
Reverse the direction of deciding a power by fit indices (e.g., less than –> greater than). The default is to count the proportion of fit indices that indicates lower fit to the model, such as how many RMSEA in the alternative model that is worse than cutoffs. The direction can be reversed by setting as |
usedFit |
The vector of names of fit indices that researchers wish to get powers from. The default is to get powers of all fit indices |
alpha |
The alpha level used to find the cutoff if the |
nVal |
The sample size value that researchers wish to find the power from. This argument is applicable when |
pmMCARval |
The percent missing completely at random value that researchers wish to find the power from. This argument is applicable when |
pmMARval |
The percent missing at random value that researchers wish to find the power from. This argument is applicable when |
condCutoff |
A logical value to use a conditional quantile method (if |
df |
The degree of freedom used in spline method in quantile regression ( |
Value
List of power given different fit indices. The TraditionalChi
means the proportion of replications that are rejected by the traditional chi-square difference test.
Author(s)
Sunthud Pornprasertmanit (psunthud@gmail.com)
See Also
Examples
## Not run:
# Null model (Nested model) with one factor
loading.null <- matrix(0, 6, 1)
loading.null[1:6, 1] <- NA
LY.NULL <- bind(loading.null, 0.7)
RPS.NULL <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model.NULL <- model(LY = LY.NULL, RPS = RPS.NULL, RTE = RTE, modelType="CFA")
# Alternative model (Parent model) with two factors
loading.alt <- matrix(0, 6, 2)
loading.alt[1:3, 1] <- NA
loading.alt[4:6, 2] <- NA
LY.ALT <- bind(loading.alt, 0.7)
latent.cor.alt <- matrix(NA, 2, 2)
diag(latent.cor.alt) <- 1
RPS.ALT <- binds(latent.cor.alt, 0.7)
CFA.Model.ALT <- model(LY = LY.ALT, RPS = RPS.ALT, RTE = RTE, modelType="CFA")
# We make the examples running only 10 replications to save time.
# In reality, more replications are needed.
Output.NULL.NULL <- sim(10, n=500, model=CFA.Model.NULL, generate=CFA.Model.NULL)
Output.ALT.NULL <- sim(10, n=500, model=CFA.Model.NULL, generate=CFA.Model.ALT)
Output.NULL.ALT <- sim(10, n=500, model=CFA.Model.ALT, generate=CFA.Model.NULL)
Output.ALT.ALT <- sim(10, n=500, model=CFA.Model.ALT, generate=CFA.Model.ALT)
# Find the power based on the derived cutoff from the models analyzed on the null datasets
getPowerFitNested(Output.ALT.NULL, Output.ALT.ALT, nullNested=Output.NULL.NULL,
nullParent=Output.NULL.ALT)
# Find the power based on the chi-square value at df=1 and the CFI change (intentionally
# use a cutoff from Cheung and Rensvold (2002) in an appropriate situation).
getPowerFitNested(Output.ALT.NULL, Output.ALT.ALT, cutoff=c(Chi=3.84, CFI=-0.10))
# The example of continous varying sample size. Note that more fine-grained
# values of n is needed, e.g., n=seq(50, 500, 1)
Output.NULL.NULL2 <- sim(NULL, n=seq(50, 500, 50), model=CFA.Model.NULL, generate=CFA.Model.NULL)
Output.ALT.NULL2 <- sim(NULL, n=seq(50, 500, 50), model=CFA.Model.NULL, generate=CFA.Model.ALT)
Output.NULL.ALT2 <- sim(NULL, n=seq(50, 500, 50), model=CFA.Model.ALT, generate=CFA.Model.NULL)
Output.ALT.ALT2 <- sim(NULL, n=seq(50, 500, 50), model=CFA.Model.ALT, generate=CFA.Model.ALT)
# Get the power based on the derived cutoff from the null model at the sample size of 250
getPowerFitNested(Output.ALT.NULL2, Output.ALT.ALT2, nullNested=Output.NULL.NULL2,
nullParent=Output.NULL.ALT2, nVal = 250)
# Get the power based on the rule of thumb from the null model at the sample size of 250
getPowerFitNested(Output.ALT.NULL2, Output.ALT.ALT2, cutoff=c(Chi=3.84, CFI=-0.10), nVal = 250)
## End(Not run)