simpleMH {simpleMH} | R Documentation |
Simple Metropolis-Hastings MCMC
Description
Simple Metropolis-Hastings MCMC
Usage
simpleMH(f, inits, theta.cov, max.iter, coda = FALSE, ...)
Arguments
f |
function that returns a single scalar value proportional to the log probability density to sample from. |
inits |
numeric vector with the initial values for the parameters to estimate |
theta.cov |
covariance matrix of the parameters to estimate. |
max.iter |
maximum number of function evaluations |
coda |
logical. Should the samples be returned as coda::mcmc
object? (defaults to |
... |
further arguments passed to |
Value
if
coda = FALSE
a list with:-
samples: A two dimensional array of samples with dimensions
generation
xparameter
-
log.p: A numeric vector with the log density evaluate at each generation.
-
if
coda = TRUE
a list with:-
samples: A object of class coda::mcmc containing all samples.
-
log.p: A numeric vector with the log density evaluate at each generation.
-
Examples
p.log <- function(x) {
B <- 0.03
return(-x[1]^2/200 - 1/2*(x[2]+B*x[1]^2-100*B)^2)
}
simpleMH(p.log, inits=c(0, 0), theta.cov = diag(2), max.iter=3000)