| analyze.simstudy.t {simitation} | R Documentation | 
analyze.simstudy.t
Description
analyze.simstudy.t
Usage
analyze.simstudy.t(
  test.statistics.t,
  alternative = c("two.sided", "less", "greater"),
  conf.level = 0.95,
  the.quantiles = c(0.025, 0.1, 0.25, 0.5, 0.75, 0.9, 0.975)
)
Arguments
| test.statistics.t | Summary information for fitting one-sample t tests. Structure is in the form returned by the function simitation::sim.t.test(). | 
| alternative | See help(t.test). | 
| conf.level | See help(t.test) | 
| the.quantiles | A numeric vector of values between 0 and 1. Summary statistics to analyze the tests will return the specified quantiles. | 
Value
A list containing the following elements:
- estimate.summary: Summary statistics for the estimate. 
- stat.summary: Summary statistics for the t-test statistic. 
- p.value.summary: Data frame with proportions of tests that rejected and did not reject the null hypothesis. 
- ci.range.summary: Summary statistics for the confidence interval range. 
- ci.proportion.above.null.summary: Summary statistics for the proportion of the upper confidence limit above the null value. 
- ci.proportion.below.null.summary: Summary statistics for the proportion of the lower confidence limit below the null value. 
- ci.limit.summary: (Only if 'alternative' is "greater" or "less") Summary statistics for either the lower or upper confidence limit, depending on the specified alternative. 
Examples
simdat.t <- sim.t(n = 25, mean = 0.3, sd = 1,  num.experiments = 2,
experiment.name = "experiment", value.name = "x", seed = 2187)
test.statistics.t <- sim.t.test(simdat.t = simdat.t, alternative = "greater",
 mu = 0, conf.level = 0.95, experiment.name = "experiment", value.name = "x")
analysis.t <- analyze.simstudy.t(test.statistics.t = test.statistics.t,
conf.level = 0.95, alternative = "greater", the.quantiles =
c(0.025, 0.25, 0.25, 0.5, 0.75, 0.975))