Simulate Models Based on the Generalized Linear Model


[Up] [Top]

Documentation for package ‘simglm’ version 0.8.9

Help Pages

compute_statistics Compute Power, Type I Error, or Precision Statistics
correlate_variables Correlate elements
desireVar Computes mixture normal variance
dropout_missing Missing Data Functions
extract_coefficients Extract Coefficients
generate_missing Tidy Missing Data Function
generate_response Simulate response variable
mar_missing Missing Data Functions
missing_data Missing Data Functions
model_fit Tidy Model Fitting Function
parse_correlation Parse correlation arguments
parse_crossclass Parse Cross-classified Random Effects
parse_formula Parses tidy formula simulation syntax
parse_power Parse power specifications
parse_randomeffect Parses random effect specification
parse_varyarguments Parse varying arguments
random_missing Missing Data Functions
rbimod Simulating mixture normal distributions
replicate_simulation Replicate Simulation
run_shiny Run Shiny Application Demo
simglm simglm: A package to simulate and perform power by simulation for models based on the generalized linear model.
simulate_error Tidy error simulation
simulate_fixed Tidy fixed effect formula simulation
simulate_heterogeneity Tidy heterogeneity of variance simulation
simulate_knot Simulate knot locations
simulate_randomeffect Tidy random effect formula simulation
sim_continuous2 Simulate continuous variables
sim_factor2 Simulate categorical, factor, or discrete variables
sim_time Simulate Time
transform_outcome Transform response variable