simex-package {simex} | R Documentation |
Error or misclassification correction in models using (MC)SIMEX
Description
Package simex
is an implementation of the SIMEX–algorithm by Cook
and Stephanski and the MCSIMEX–Algorithm by Küchenhoff, Mwalili and Lesaffre.
Details
Package: | simex |
Type: | Package |
Version: | 1.8 |
Date: | 2019-07-28 |
License: | GPL 2 or above |
LazyLoad: | yes |
The package includes first of all the implementation for the SIMEX– and MCSIMEX–Algorithms. Jackknife and asymptotic variance estimation are implemented. Various methods and analytic tools are provided for a simple and fast access to the SIMEX– and MCSIMEX–Algorithm.
Functions simex()
and mcsimex()
can be used on models issued
from lm()
, glm()
with asymtotic estimation.
Models from nls()
, gam()
(package mgcv),
polr()
(package MASS),
lme()
, nlme()
(package nlme) and coxph()
(package survival) can also be corrected with
these algorithms, but without asymptotic estimations.
Author(s)
Wolfgang Lederer, Heidi Seibold, Helmut Küchenhoff
Maintainer: Wolfgang Lederer,wolfgang.lederer@gmail.com
References
Lederer, W. and Küchenhoff, H. (2006) A short introduction to the SIMEX and MCSIMEX. R News, 6/4, 26 – 31
See Also
and for functions generating the initial naive models:
lm
, glm
, nls
,
gam
, lme
, nlme
, polr
, coxph
Examples
# See example(simex) and example(mcsimex)
## Seed
set.seed(49494)
## simulating the measurement error standard deviations
sd_me1 <- 0.3
sd_me2 <- 0.4
temp <- runif(100, min = 0, max = 0.6)
sd_me_het1 <- sort(temp)
temp2 <- rnorm(100, sd = 0.1)
sd_me_het2 <- abs(sd_me_het1 + temp2)
## simulating the independent variables x (real and with measurement error):
x_real1 <- rnorm(100)
x_real2 <- rpois(100, lambda = 2)
x_real3 <- -4*x_real1 + runif(100, min = -2, max = 2) # correlated to x_real
x_measured1 <- x_real1 + sd_me1 * rnorm(100)
x_measured2 <- x_real2 + sd_me2 * rnorm(100)
x_het1 <- x_real1 + sd_me_het1 * rnorm(100)
x_het2 <- x_real3 + sd_me_het2 * rnorm(100)
## calculating dependent variable y:
y1 <- x_real1 + rnorm(100, sd = 0.05)
y2 <- x_real1 + 2*x_real2 + rnorm(100, sd = 0.08)
y3 <- x_real1 + 2*x_real3 + rnorm(100, sd = 0.08)
### one variable with homoscedastic measurement error
(model_real <- lm(y1 ~ x_real1))
(model_naiv <- lm(y1 ~ x_measured1, x = TRUE))
(model_simex <- simex(model_naiv, SIMEXvariable = "x_measured1", measurement.error = sd_me1))
plot(model_simex)
### two variables with homoscedastic measurement errors
(model_real2 <- lm(y2 ~ x_real1 + x_real2))
(model_naiv2 <- lm(y2 ~ x_measured1 + x_measured2, x = TRUE))
(model_simex2 <- simex(model_naiv2, SIMEXvariable = c("x_measured1", "x_measured2"),
measurement.error = cbind(sd_me1, sd_me2)))
plot(model_simex2)
### one variable with increasing heteroscedastic measurement error
model_real
(mod_naiv1 <- lm(y1 ~ x_het1, x = TRUE))
(mod_simex1 <- simex(mod_naiv1, SIMEXvariable = "x_het1",
measurement.error = sd_me_het1, asymptotic = FALSE))
plot(mod_simex1)
## Not run:
### two correlated variables with heteroscedastic measurement errors
(model_real3 <- lm(y3 ~ x_real1 + x_real3))
(mod_naiv2 <- lm(y3 ~ x_het1 + x_het2, x = TRUE))
(mod_simex2 <- simex(mod_naiv2, SIMEXvariable = c("x_het1", "x_het2"),
measurement.error = cbind(sd_me_het1, sd_me_het2), asymptotic = FALSE))
plot(mod_simex2)
### two variables, one with homoscedastic, one with heteroscedastic measurement error
model_real2
(mod_naiv3 <- lm(y2 ~ x_measured1 + x_het2, x = TRUE))
(mod_simex3 <- simex(mod_naiv3, SIMEXvariable = c("x_measured1", "x_het2"),
measurement.error = cbind(sd_me1, sd_me_het2), asymptotic = FALSE))
### glm: two variables, one with homoscedastic, one with heteroscedastic measurement error
t <- x_real1 + 2*x_real2
g <- 1 / (1 + exp(-t))
u <- runif(100)
ybin <- as.numeric(u < g)
(logit_real <- glm(ybin ~ x_real1 + x_real2, family = binomial))
(logit_naiv <- glm(ybin ~ x_measured1 + x_het2, x = TRUE, family = binomial))
(logit_simex <- simex(logit_naiv, SIMEXvariable = c("x_measured1", "x_het2"),
measurement.error = cbind(sd_me1, sd_me_het2), asymptotic = FALSE))
summary(logit_simex)
print(logit_simex)
plot(logit_simex)
## End(Not run)