| cpen {simest} | R Documentation | 
C code for convex penalized least squares regression.
Description
This function is only intended for an internal use.
Usage
cpen(dim, t_input, z_input, w_input, a0_input,
	lambda_input, Ky_input, L_input, U_input,
	fun_input, res_input, flag, tol_input, 
	zhat_input, iter, Deriv_input)
Arguments
dim | 
 vector of sample size and maximum iteration.  | 
t_input | 
 x-vector in cvx.pen.reg.  | 
z_input | 
 y-vector in cvx.pen.reg.  | 
w_input | 
 w-vector in cvx.pen.reg.  | 
a0_input | 
 initial vector for iterative algorithm.  | 
lambda_input | 
 lambda-value in cvx.pen.reg.  | 
Ky_input | 
 Internal vector used for algorithm.  | 
L_input | 
 Internal vector. Set to 0.  | 
U_input | 
 Internal vector. Set to 0.  | 
fun_input | 
 Internal vector. Set to 0.  | 
res_input | 
 Internal vector. Set to 0.  | 
flag | 
 Logical for stop criterion.  | 
tol_input | 
 tolerance level used in cvx.pen.reg.  | 
zhat_input | 
 Internal vector. Set to zero. Stores the final output.  | 
iter | 
 Iteration number inside the algorithm.  | 
Deriv_input | 
 Internal vector. Set to zero. Stores the derivative vector.  | 
Details
See the source for more details about the algorithm.
Value
Does not return anything. Changes the inputs according to the iterations.
Author(s)
Arun Kumar Kuchibhotla, arunku@wharton.upenn.edu.
Source
Dontchev, A. L., Qi, H. and Qi, L. (2003). Quadratic Convergence of Newton's Method for Convex Interpolation and Smoothing. Constructive Approximation, 19(1):123-143.