cpen {simest} | R Documentation |
C code for convex penalized least squares regression.
Description
This function is only intended for an internal use.
Usage
cpen(dim, t_input, z_input, w_input, a0_input,
lambda_input, Ky_input, L_input, U_input,
fun_input, res_input, flag, tol_input,
zhat_input, iter, Deriv_input)
Arguments
dim |
vector of sample size and maximum iteration. |
t_input |
x-vector in cvx.pen.reg. |
z_input |
y-vector in cvx.pen.reg. |
w_input |
w-vector in cvx.pen.reg. |
a0_input |
initial vector for iterative algorithm. |
lambda_input |
lambda-value in cvx.pen.reg. |
Ky_input |
Internal vector used for algorithm. |
L_input |
Internal vector. Set to 0. |
U_input |
Internal vector. Set to 0. |
fun_input |
Internal vector. Set to 0. |
res_input |
Internal vector. Set to 0. |
flag |
Logical for stop criterion. |
tol_input |
tolerance level used in cvx.pen.reg. |
zhat_input |
Internal vector. Set to zero. Stores the final output. |
iter |
Iteration number inside the algorithm. |
Deriv_input |
Internal vector. Set to zero. Stores the derivative vector. |
Details
See the source for more details about the algorithm.
Value
Does not return anything. Changes the inputs according to the iterations.
Author(s)
Arun Kumar Kuchibhotla, arunku@wharton.upenn.edu.
Source
Dontchev, A. L., Qi, H. and Qi, L. (2003). Quadratic Convergence of Newton's Method for Convex Interpolation and Smoothing. Constructive Approximation, 19(1):123-143.