Simulating Longitudinal Data with Causal Inference Applications


[Up] [Top]

Documentation for package ‘simcausal’ version 0.5.6

Help Pages

+.DAG Adding Node(s) to DAG
A Subsetting/Indexing Actions Defined for 'DAG' Object
action Define and Add Actions (Interventions)
add.action Define and Add Actions (Interventions)
add.nodes Adding Node(s) to DAG
DAG.empty Initialize an empty DAG object
Define_sVar Class for defining and evaluating user-specified summary measures (exprs_list)
DF.to.long Convert Data from Wide to Long Format Using 'reshape'
DF.to.longDT Faster Conversion of Data from Wide to Long Format Using 'dcast.data.table'
distr.list List All Custom Distribution Functions in 'simcausal'.
doLTCF Missing Variable Imputation with Last Time Point Value Carried Forward (LTCF)
eval.target Evaluate the True Value of the Causal Target Parameter
igraph.to.sparseAdjMat Convert igraph Network Object into Sparse Adjacency Matrix
N Subsetting/Indexing 'DAG' Nodes
net.list List All Custom Network Generator Functions in 'simcausal'.
NetInd.to.sparseAdjMat Convert Network IDs Matrix into Sparse Adjacency Matrix
NetIndClass R6 class for creating and storing a friend matrix (network IDs) for network data
network Define a Network Generator
node Create Node Object(s)
parents Show Node Parents Given DAG Object
plotDAG Plot DAG
plotSurvEst (EXPERIMENTAL) Plot Discrete Survival Function(s)
print.DAG Print DAG Object
print.DAG.action Print Action Object
print.DAG.node Print DAG.node Object
rbern Random Sample from Bernoulli Distribution
rcat.b0 Random Sample from Base 1 (rcat.b1) or Base 0 (rcat.b0) Categorical (Integer) Distribution
rcat.b1 Random Sample from Base 1 (rcat.b1) or Base 0 (rcat.b0) Categorical (Integer) Distribution
rcat.factor Random Sample for a Categorical Factor
rcategor Random Sample for a Categorical Factor
rcategor.int Random Sample from Base 1 (rcat.b1) or Base 0 (rcat.b0) Categorical (Integer) Distribution
rconst Constant (Degenerate) Distribution (Returns its Own Argument 'const')
rdistr.template Template for Writing Custom Distribution Functions
rnet.gnm Call 'igraph::sample_gnm' to Generate Random Graph Object According to the G(n,m) Erdos-Renyi Model
rnet.gnp Call 'igraph::sample_gnp' to Generate Random Graph Object According to the G(n,p) Erdos-Renyi Model
rnet.SmWorld Call 'igraph::sample_smallworld' to Generate Random Graph Object from the Watts-Strogatz Small-World Model
set.DAG Create and Lock DAG Object
set.targetE Define Non-Parametric Causal Parameters
set.targetMSM Define Causal Parameters with a Working Marginal Structural Model (MSM)
sim Simulate Observed or Full Data from 'DAG' Object
simcausal Simulating Longitudinal Data with Causal Inference Applications
simfull Simulate Full Data (From Action DAG(s))
simobs Simulate Observed Data
sparseAdjMat.to.igraph Convert Network from Sparse Adjacency Matrix into igraph Object
sparseAdjMat.to.NetInd Convert Network from Sparse Adjacency Matrix into Network IDs Matrix
vecfun.add Add Custom Vectorized Functions
vecfun.all.print Print Names of All Vectorized Functions
vecfun.print Print Names of Custom Vectorized Functions
vecfun.remove Remove Custom Vectorized Functions
vecfun.reset Reset Custom Vectorized Function List