+.DAG |
Adding Node(s) to DAG |
A |
Subsetting/Indexing Actions Defined for 'DAG' Object |
action |
Define and Add Actions (Interventions) |
add.action |
Define and Add Actions (Interventions) |
add.nodes |
Adding Node(s) to DAG |
DAG.empty |
Initialize an empty DAG object |
Define_sVar |
Class for defining and evaluating user-specified summary measures (exprs_list) |
DF.to.long |
Convert Data from Wide to Long Format Using 'reshape' |
DF.to.longDT |
Faster Conversion of Data from Wide to Long Format Using 'dcast.data.table' |
distr.list |
List All Custom Distribution Functions in 'simcausal'. |
doLTCF |
Missing Variable Imputation with Last Time Point Value Carried Forward (LTCF) |
eval.target |
Evaluate the True Value of the Causal Target Parameter |
igraph.to.sparseAdjMat |
Convert igraph Network Object into Sparse Adjacency Matrix |
N |
Subsetting/Indexing 'DAG' Nodes |
net.list |
List All Custom Network Generator Functions in 'simcausal'. |
NetInd.to.sparseAdjMat |
Convert Network IDs Matrix into Sparse Adjacency Matrix |
NetIndClass |
R6 class for creating and storing a friend matrix (network IDs) for network data |
network |
Define a Network Generator |
node |
Create Node Object(s) |
parents |
Show Node Parents Given DAG Object |
plotDAG |
Plot DAG |
plotSurvEst |
(EXPERIMENTAL) Plot Discrete Survival Function(s) |
print.DAG |
Print DAG Object |
print.DAG.action |
Print Action Object |
print.DAG.node |
Print DAG.node Object |
rbern |
Random Sample from Bernoulli Distribution |
rcat.b0 |
Random Sample from Base 1 (rcat.b1) or Base 0 (rcat.b0) Categorical (Integer) Distribution |
rcat.b1 |
Random Sample from Base 1 (rcat.b1) or Base 0 (rcat.b0) Categorical (Integer) Distribution |
rcat.factor |
Random Sample for a Categorical Factor |
rcategor |
Random Sample for a Categorical Factor |
rcategor.int |
Random Sample from Base 1 (rcat.b1) or Base 0 (rcat.b0) Categorical (Integer) Distribution |
rconst |
Constant (Degenerate) Distribution (Returns its Own Argument 'const') |
rdistr.template |
Template for Writing Custom Distribution Functions |
rnet.gnm |
Call 'igraph::sample_gnm' to Generate Random Graph Object According to the G(n,m) Erdos-Renyi Model |
rnet.gnp |
Call 'igraph::sample_gnp' to Generate Random Graph Object According to the G(n,p) Erdos-Renyi Model |
rnet.SmWorld |
Call 'igraph::sample_smallworld' to Generate Random Graph Object from the Watts-Strogatz Small-World Model |
set.DAG |
Create and Lock DAG Object |
set.targetE |
Define Non-Parametric Causal Parameters |
set.targetMSM |
Define Causal Parameters with a Working Marginal Structural Model (MSM) |
sim |
Simulate Observed or Full Data from 'DAG' Object |
simcausal |
Simulating Longitudinal Data with Causal Inference Applications |
simfull |
Simulate Full Data (From Action DAG(s)) |
simobs |
Simulate Observed Data |
sparseAdjMat.to.igraph |
Convert Network from Sparse Adjacency Matrix into igraph Object |
sparseAdjMat.to.NetInd |
Convert Network from Sparse Adjacency Matrix into Network IDs Matrix |
vecfun.add |
Add Custom Vectorized Functions |
vecfun.all.print |
Print Names of All Vectorized Functions |
vecfun.print |
Print Names of Custom Vectorized Functions |
vecfun.remove |
Remove Custom Vectorized Functions |
vecfun.reset |
Reset Custom Vectorized Function List |