SimSSMIVary {simStateSpace} | R Documentation |
Simulate Data from a State Space Model (Individual-Varying Parameters)
Description
This function simulates data using a state space model. It assumes that the parameters can vary across individuals.
Usage
SimSSMIVary(
n,
time,
delta_t = 1,
mu0,
sigma0_l,
alpha,
beta,
psi_l,
nu,
lambda,
theta_l,
type = 0,
x = NULL,
gamma = NULL,
kappa = NULL
)
Arguments
n |
Positive integer. Number of individuals. |
time |
Positive integer. Number of time points. |
delta_t |
Numeric.
Time interval.
The default value is |
mu0 |
List of numeric vectors.
Each element of the list
is the mean of initial latent variable values
( |
sigma0_l |
List of numeric matrices.
Each element of the list
is the Cholesky factorization ( |
alpha |
List of numeric vectors.
Each element of the list
is the vector of constant values for the dynamic model
( |
beta |
List of numeric matrices.
Each element of the list
is the transition matrix relating the values of the latent variables
at the previous to the current time point
( |
psi_l |
List of numeric matrices.
Each element of the list
is the Cholesky factorization ( |
nu |
List of numeric vectors.
Each element of the list
is the vector of intercept values for the measurement model
( |
lambda |
List of numeric matrices.
Each element of the list
is the factor loading matrix linking the latent variables
to the observed variables
( |
theta_l |
List of numeric matrices.
Each element of the list
is the Cholesky factorization ( |
type |
Integer.
State space model type.
See Details in |
x |
List.
Each element of the list is a matrix of covariates
for each individual |
gamma |
List of numeric matrices.
Each element of the list
is the matrix linking the covariates to the latent variables
at current time point
( |
kappa |
List of numeric matrices.
Each element of the list
is the matrix linking the covariates to the observed variables
at current time point
( |
Details
Parameters can vary across individuals
by providing a list of parameter values.
If the length of any of the parameters
(mu0
,
sigma0_l
,
alpha
,
beta
,
psi_l
,
nu
,
lambda
,
theta_l
,
gamma
, or
kappa
)
is less the n
,
the function will cycle through the available values.
Value
Returns an object of class simstatespace
which is a list with the following elements:
-
call
: Function call. -
args
: Function arguments. -
data
: Generated data which is a list of lengthn
. Each element ofdata
is a list with the following elements:-
id
: A vector of ID numbers with lengthl
, wherel
is the value of the function argumenttime
. -
time
: A vector time points of lengthl
. -
y
: Al
byk
matrix of values for the manifest variables. -
eta
: Al
byp
matrix of values for the latent variables. -
x
: Al
byj
matrix of values for the covariates (when covariates are included).
-
-
fun
: Function used.
Author(s)
Ivan Jacob Agaloos Pesigan
References
Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling: A Multidisciplinary Journal, 17(2), 303–332. doi:10.1080/10705511003661553
See Also
Other Simulation of State Space Models Data Functions:
LinSDE2SSM()
,
SimBetaN()
,
SimPhiN()
,
SimSSMFixed()
,
SimSSMLinGrowth()
,
SimSSMLinGrowthIVary()
,
SimSSMLinSDEFixed()
,
SimSSMLinSDEIVary()
,
SimSSMOUFixed()
,
SimSSMOUIVary()
,
SimSSMVARFixed()
,
SimSSMVARIVary()
,
TestPhi()
,
TestStability()
,
TestStationarity()
Examples
# prepare parameters
# In this example, beta varies across individuals.
set.seed(42)
## number of individuals
n <- 5
## time points
time <- 50
## dynamic structure
p <- 3
mu0 <- list(
rep(x = 0, times = p)
)
sigma0 <- 0.001 * diag(p)
sigma0_l <- list(
t(chol(sigma0))
)
alpha <- list(
rep(x = 0, times = p)
)
beta <- list(
0.1 * diag(p),
0.2 * diag(p),
0.3 * diag(p),
0.4 * diag(p),
0.5 * diag(p)
)
psi <- 0.001 * diag(p)
psi_l <- list(
t(chol(psi))
)
## measurement model
k <- 3
nu <- list(
rep(x = 0, times = k)
)
lambda <- list(
diag(k)
)
theta <- 0.001 * diag(k)
theta_l <- list(
t(chol(theta))
)
## covariates
j <- 2
x <- lapply(
X = seq_len(n),
FUN = function(i) {
matrix(
data = stats::rnorm(n = time * j),
nrow = j,
ncol = time
)
}
)
gamma <- list(
diag(x = 0.10, nrow = p, ncol = j)
)
kappa <- list(
diag(x = 0.10, nrow = k, ncol = j)
)
# Type 0
ssm <- SimSSMIVary(
n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 0
)
plot(ssm)
# Type 1
ssm <- SimSSMIVary(
n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 1,
x = x,
gamma = gamma
)
plot(ssm)
# Type 2
ssm <- SimSSMIVary(
n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 2,
x = x,
gamma = gamma,
kappa = kappa
)
plot(ssm)