SimSSMFixed {simStateSpace} | R Documentation |
Simulate Data from a State Space Model (Fixed Parameters)
Description
This function simulates data using a state space model. It assumes that the parameters remain constant across individuals and over time.
Usage
SimSSMFixed(
n,
time,
delta_t = 1,
mu0,
sigma0_l,
alpha,
beta,
psi_l,
nu,
lambda,
theta_l,
type = 0,
x = NULL,
gamma = NULL,
kappa = NULL
)
Arguments
n |
Positive integer. Number of individuals. |
time |
Positive integer. Number of time points. |
delta_t |
Numeric.
Time interval.
The default value is |
mu0 |
Numeric vector.
Mean of initial latent variable values
( |
sigma0_l |
Numeric matrix.
Cholesky factorization ( |
alpha |
Numeric vector.
Vector of constant values for the dynamic model
( |
beta |
Numeric matrix.
Transition matrix relating the values of the latent variables
at the previous to the current time point
( |
psi_l |
Numeric matrix.
Cholesky factorization ( |
nu |
Numeric vector.
Vector of intercept values for the measurement model
( |
lambda |
Numeric matrix.
Factor loading matrix linking the latent variables
to the observed variables
( |
theta_l |
Numeric matrix.
Cholesky factorization ( |
type |
Integer. State space model type. See Details for more information. |
x |
List.
Each element of the list is a matrix of covariates
for each individual |
gamma |
Numeric matrix.
Matrix linking the covariates to the latent variables
at current time point
( |
kappa |
Numeric matrix.
Matrix linking the covariates to the observed variables
at current time point
( |
Details
Type 0
The measurement model is given by
\mathbf{y}_{i, t}
=
\boldsymbol{\nu}
+
\boldsymbol{\Lambda}
\boldsymbol{\eta}_{i, t}
+
\boldsymbol{\varepsilon}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\varepsilon}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Theta}
\right)
where
\mathbf{y}_{i, t}
,
\boldsymbol{\eta}_{i, t}
,
and
\boldsymbol{\varepsilon}_{i, t}
are random variables
and
\boldsymbol{\nu}
,
\boldsymbol{\Lambda}
,
and
\boldsymbol{\Theta}
are model parameters.
\mathbf{y}_{i, t}
represents a vector of observed random variables,
\boldsymbol{\eta}_{i, t}
a vector of latent random variables,
and
\boldsymbol{\varepsilon}_{i, t}
a vector of random measurement errors,
at time t
and individual i
.
\boldsymbol{\nu}
denotes a vector of intercepts,
\boldsymbol{\Lambda}
a matrix of factor loadings,
and
\boldsymbol{\Theta}
the covariance matrix of
\boldsymbol{\varepsilon}
.
An alternative representation of the measurement error is given by
\boldsymbol{\varepsilon}_{i, t}
=
\boldsymbol{\Theta}^{\frac{1}{2}}
\mathbf{z}_{i, t},
\quad
\mathrm{with}
\quad
\mathbf{z}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\mathbf{I}
\right)
where
\mathbf{z}_{i, t}
is a vector of
independent standard normal random variables and
\left( \boldsymbol{\Theta}^{\frac{1}{2}} \right)
\left( \boldsymbol{\Theta}^{\frac{1}{2}} \right)^{\prime}
=
\boldsymbol{\Theta} .
The dynamic structure is given by
\boldsymbol{\eta}_{i, t}
=
\boldsymbol{\alpha}
+
\boldsymbol{\beta}
\boldsymbol{\eta}_{i, t - 1}
+
\boldsymbol{\zeta}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\zeta}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Psi}
\right)
where
\boldsymbol{\eta}_{i, t}
,
\boldsymbol{\eta}_{i, t - 1}
,
and
\boldsymbol{\zeta}_{i, t}
are random variables,
and
\boldsymbol{\alpha}
,
\boldsymbol{\beta}
,
and
\boldsymbol{\Psi}
are model parameters.
Here,
\boldsymbol{\eta}_{i, t}
is a vector of latent variables
at time t
and individual i
,
\boldsymbol{\eta}_{i, t - 1}
represents a vector of latent variables
at time t - 1
and individual i
,
and
\boldsymbol{\zeta}_{i, t}
represents a vector of dynamic noise
at time t
and individual i
.
\boldsymbol{\alpha}
denotes a vector of intercepts,
\boldsymbol{\beta}
a matrix of autoregression
and cross regression coefficients,
and
\boldsymbol{\Psi}
the covariance matrix of
\boldsymbol{\zeta}_{i, t}
.
An alternative representation of the dynamic noise is given by
\boldsymbol{\zeta}_{i, t}
=
\boldsymbol{\Psi}^{\frac{1}{2}}
\mathbf{z}_{i, t},
\quad
\mathrm{with}
\quad
\mathbf{z}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\mathbf{I}
\right)
where
\left( \boldsymbol{\Psi}^{\frac{1}{2}} \right)
\left( \boldsymbol{\Psi}^{\frac{1}{2}} \right)^{\prime}
=
\boldsymbol{\Psi} .
Type 1
The measurement model is given by
\mathbf{y}_{i, t}
=
\boldsymbol{\nu}
+
\boldsymbol{\Lambda}
\boldsymbol{\eta}_{i, t}
+
\boldsymbol{\varepsilon}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\varepsilon}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Theta}
\right) .
The dynamic structure is given by
\boldsymbol{\eta}_{i, t}
=
\boldsymbol{\alpha}
+
\boldsymbol{\beta}
\boldsymbol{\eta}_{i, t - 1}
+
\boldsymbol{\Gamma}
\mathbf{x}_{i, t}
+
\boldsymbol{\zeta}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\zeta}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Psi}
\right)
where
\mathbf{x}_{i, t}
represents a vector of covariates
at time t
and individual i
,
and \boldsymbol{\Gamma}
the coefficient matrix
linking the covariates to the latent variables.
Type 2
The measurement model is given by
\mathbf{y}_{i, t}
=
\boldsymbol{\nu}
+
\boldsymbol{\Lambda}
\boldsymbol{\eta}_{i, t}
+
\boldsymbol{\kappa}
\mathbf{x}_{i, t}
+
\boldsymbol{\varepsilon}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\varepsilon}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Theta}
\right)
where
\boldsymbol{\kappa}
represents the coefficient matrix
linking the covariates to the observed variables.
The dynamic structure is given by
\boldsymbol{\eta}_{i, t}
=
\boldsymbol{\alpha}
+
\boldsymbol{\beta}
\boldsymbol{\eta}_{i, t - 1}
+
\boldsymbol{\Gamma}
\mathbf{x}_{i, t}
+
\boldsymbol{\zeta}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\zeta}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Psi}
\right) .
Value
Returns an object of class simstatespace
which is a list with the following elements:
-
call
: Function call. -
args
: Function arguments. -
data
: Generated data which is a list of lengthn
. Each element ofdata
is a list with the following elements:-
id
: A vector of ID numbers with lengthl
, wherel
is the value of the function argumenttime
. -
time
: A vector time points of lengthl
. -
y
: Al
byk
matrix of values for the manifest variables. -
eta
: Al
byp
matrix of values for the latent variables. -
x
: Al
byj
matrix of values for the covariates (when covariates are included).
-
-
fun
: Function used.
Author(s)
Ivan Jacob Agaloos Pesigan
References
Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling: A Multidisciplinary Journal, 17(2), 303–332. doi:10.1080/10705511003661553
See Also
Other Simulation of State Space Models Data Functions:
LinSDE2SSM()
,
SimBetaN()
,
SimPhiN()
,
SimSSMIVary()
,
SimSSMLinGrowth()
,
SimSSMLinGrowthIVary()
,
SimSSMLinSDEFixed()
,
SimSSMLinSDEIVary()
,
SimSSMOUFixed()
,
SimSSMOUIVary()
,
SimSSMVARFixed()
,
SimSSMVARIVary()
,
TestPhi()
,
TestStability()
,
TestStationarity()
Examples
# prepare parameters
set.seed(42)
## number of individuals
n <- 5
## time points
time <- 50
## dynamic structure
p <- 3
mu0 <- rep(x = 0, times = p)
sigma0 <- 0.001 * diag(p)
sigma0_l <- t(chol(sigma0))
alpha <- rep(x = 0, times = p)
beta <- 0.50 * diag(p)
psi <- 0.001 * diag(p)
psi_l <- t(chol(psi))
## measurement model
k <- 3
nu <- rep(x = 0, times = k)
lambda <- diag(k)
theta <- 0.001 * diag(k)
theta_l <- t(chol(theta))
## covariates
j <- 2
x <- lapply(
X = seq_len(n),
FUN = function(i) {
matrix(
data = stats::rnorm(n = time * j),
nrow = j,
ncol = time
)
}
)
gamma <- diag(x = 0.10, nrow = p, ncol = j)
kappa <- diag(x = 0.10, nrow = k, ncol = j)
# Type 0
ssm <- SimSSMFixed(
n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 0
)
plot(ssm)
# Type 1
ssm <- SimSSMFixed(
n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 1,
x = x,
gamma = gamma
)
plot(ssm)
# Type 2
ssm <- SimSSMFixed(
n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 2,
x = x,
gamma = gamma,
kappa = kappa
)
plot(ssm)