join_metrics {simMetric} | R Documentation |
Join metrics
Description
Calculate and join selected evaluation metrics given a data.frame
of simulation study results
Provides a fast way to add multiple metrics and their Monte Carlo standard errors.
Usage
join_metrics(
data,
id_cols,
metrics = c("coverage", "mse", "modSE"),
true_value = NULL,
ll_col = NULL,
ul_col = NULL,
estimates_col = NULL,
se_col = NULL,
p_col = NULL,
alpha = 0.05
)
Arguments
data |
A |
id_cols |
Column name(s) on which to group data and calculate metrics. |
metrics |
A vector of metrics to be calculated. |
true_value |
The true parameter to be estimated. |
ll_col |
Name of the column that contains the lower limit of the confidence intervals. (Required for calculating coverage.) |
ul_col |
Name of the column that contains the upper limit of the confidence intervals. (Required for calculating coverage.) |
estimates_col |
Name of the column that contains the parameter estimates. (Required for calculating bias, empSE, and mse.) |
se_col |
Name of the column that contains the standard errors. (Required for calculating modSE.) |
p_col |
Name of the column that contains the p-values. (Required for calculating rejection.) |
alpha |
The nominal significance level specified. (Required for calculating rejection.) |
Value
data.frame
containing metrics and id_cols
Examples
simulations_df <- data.frame(
idx=rep(1:10, 100),
idx2=sample(c("a", "b"), size=1000, replace=TRUE),
p_value=runif(1000),
est=rnorm(n=1000),
conf.ll= rnorm(n=1000, mean=-20),
conf.ul= rnorm(n=1000, mean=20)
)
res <- join_metrics(
data=simulations_df,
id_cols=c("idx", "idx2"),
metrics=c("rejection", "coverage", "mse"),
true_value=0,
ll_col="conf.ll",
ul_col="conf.ul",
estimates_col="est",
p_col="p_value",
)