cat.evaluation {simCAT}R Documentation

CAT Evaluation

Description

Evaluate a CAT simulation

Usage

cat.evaluation(results, true.scores, item.name, rmax)

Arguments

results

list with results of a CAT simulation from simCAT

true.scores

true scores

item.name

vector with the name of all items in the bank

rmax

item maximum exposure rate

Value

a list with two elements.

evaluate is a data.frame. Each line corresponds to a replication, and the columns are the following variables:

conditional is a data.frame with the same variables (except for length_sd and length_median) conditioned to the true scores. The colnames are the thetas in each decile, that is, quantile(true.scores, probs = seq(.1, 1, length.out = 10)). Each line corresponds to the mean of the investigated variables for each decile. If there are replications, values are the replication means for each decile.

Author(s)

Alexandre Jaloto

Examples



set.seed(1)
n.items <- 50
pars <- data.frame(
 a = rlnorm(n.items),
 b = rnorm(n.items),
 c = rbeta(n.items, 5, 17),
 d = 1)

# thetas
theta <- rnorm(100)

# simulate responses
resps <- gen.resp(theta, pars[,1:3])

results <- simCAT(resps = resps,
 bank = pars[,1:3],
 start.theta = 0,
 sel.method = 'MFI',
 cat.type = 'variable',
 threshold = .3,
 stop = list(se = .3, max.items = 10))

eval <- cat.evaluation(
 results = results,
 true.scores = theta,
 item.name = paste0('I', 1:nrow(pars)),
 rmax = 1)

#### 3 replications
replications <- 3

# simulate responses
set.seed(1)
resps <- list()
for(i in 1:replications)
 resps[[i]] <- gen.resp(theta, pars[,1:3])

# CAT
results <- list()
for (rep in 1:replications)
{
 print(paste0('replication: ', rep, '/', replications))
 results[[rep]] <- simCAT(
  resps = resps[[rep]],
  bank = pars[,1:3],
  start.theta = 0,
  sel.method = 'MFI',
  cat.type = 'variable',
  threshold = .3,
  stop = list(se = .5, max.items = 10))
}

eval <- cat.evaluation(
 results = results,
 true.scores = theta,
 item.name = paste0('I', 1:nrow(pars)),
 rmax = 1)



[Package simCAT version 1.0.0 Index]