same_size_clustering {sigminer} | R Documentation |
Same Size Clustering
Description
This is a wrapper for several implementation that classify samples into same size clusters, the details please see this blog. The source code is modified based on code from the blog.
Usage
same_size_clustering(
mat,
diss = FALSE,
clsize = NULL,
algo = c("nnit", "hcbottom", "kmvar"),
method = c("maxd", "random", "mind", "elki", "ward.D", "average", "complete", "single")
)
Arguments
mat |
a data/distance matrix. |
diss |
if |
clsize |
integer, number of sample within a cluster. |
algo |
algorithm. |
method |
method. |
Value
a vector.
Examples
set.seed(1234L)
x <- rbind(
matrix(rnorm(100, sd = 0.3), ncol = 2),
matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2)
)
colnames(x) <- c("x", "y")
y1 <- same_size_clustering(x, clsize = 10)
y11 <- same_size_clustering(as.matrix(dist(x)), clsize = 10, diss = TRUE)
y2 <- same_size_clustering(x, clsize = 10, algo = "hcbottom", method = "ward.D")
y3 <- same_size_clustering(x, clsize = 10, algo = "kmvar")
y33 <- same_size_clustering(as.matrix(dist(x)), clsize = 10, algo = "kmvar", diss = TRUE)
[Package sigminer version 2.3.1 Index]