summary.kernel_sievePH {sievePH} | R Documentation |
Summarizing Nonparametric Kernel-Smoothed Stratified Mark-Specific Proportional Hazards Model Fits
Description
summary
method for an object of class kernel_sievePH
.
Usage
## S3 method for class 'kernel_sievePH'
summary(
object,
contrast = c("te", "hr", "loghr"),
sieveAlternative = c("twoSided", "oneSided"),
confLevel = 0.95,
...
)
## S3 method for class 'summary.kernel_sievePH'
print(x, digits = 4, ...)
Arguments
object |
an object of class |
contrast |
a character string specifying the treatment effect parameter
of interest. The default value is |
sieveAlternative |
a character string specifying the alternative
hypothesis for the sieve tests, which can be either |
confLevel |
the confidence level (0.95 by default) of reported confidence intervals |
... |
further arguments passed to or from other methods |
x |
an object of class |
digits |
the number of significant digits to use when printing (4 by default) |
Details
print.summary.kernel_sievePH
prints a formatted summary of
results. Inference about coefficients in the kernel-smoothed mark-specific
proportional hazards model is tabulated. Additionally, a summary is
generated
from the tests of two relevant null hypotheses: (1) {H_0: HR(v)=1
for
all v
}, and (2) {H_0: HR(v)=HR
for all v
}. For the tests
of (2), sieveAlternative
controls the choice of the alternative
hypothesis.
Value
An object of class summary.kernel_sievePH
, which is a list
with the following components:
-
estBeta
: a data frame summarizing point estimates and standard errors of the mark-specific coefficients for treatment. -
HRunity.2sided
: a data frame with test statistics (first row) and corresponding p-values (second row) for testingH_{10}: HR(v) = 1
vs.H_{1a}: HR(v) \neq 1
for any v\in [a, b]
(general alternative).TSUP1
is based on an extension of the classic Kolmogorov-Smirnov supremum-based test.Tint1
is a generalization of the integration-based Cramer-von Mises test. -
HRunity.1sided
: a data frame with test statistics (first row) and corresponding p-values (second row) for testingH_{10}: HR(v) = 1
vs.H_{1m}: HR(v) \leq 1
with strict inequality for some v\in [a, b]
(monotone alternative).TSUP1m
is based on an extension of the classic Kolmogorov-Smirnov supremum-based test.Tint1m
is a generalization of the integration-based Cramer-von Mises test. -
HRconstant.2sided
: a data frame with test statistics (first row) and corresponding p-values (second row) for testingH_{20}
: HR(v) does not depend on v\in [a, b]
vs.H_{2a}
: HR depends on v\in [a, b]
(general alternative).TSUP2
is based on an extension of the classic Kolmogorov-Smirnov supremum-based test.Tint2
is a generalization of the integration-based Cramer-von Mises test. This component is available ifsieveAlternative="twoSided"
. -
HRconstant.1sided
: a data frame with test statistics (first row) and corresponding p-values (second row) for testingH_{20}
: HR(v) does not depend on v\in [a, b]
vs.H_{2m}
: HR increases as v increases\in [a, b]
(monotone alternative).TSUP2m
is based on an extension of the classic Kolmogorov-Smirnov supremum-based test.Tint2m
is a generalization of the integration-based Cramer-von Mises test. This component is available ifsieveAlternative="oneSided"
. -
te
: a data frame summarizing point and interval estimates of the mark-specific treatment efficacy on the grid of mark values defined bynvgrid
spanning from the minimum and maximum of the mark (available ifcontrast="te"
). The confidence level is specified byconfLevel
. -
hr
: a data frame summarizing point and interval estimates of the mark-specific hazard ratio on the grid of mark values defined bynvgrid
spanning from the minimum and maximum of the mark (available ifcontrast="hr"
). The confidence level is specified byconfLevel
. -
loghr
: a data frame summarizing point and interval estimates of the mark-specific log hazard ratio on the grid of mark values defined bynvgrid
spanning from the minimum and maximum of the mark (available ifcontrast="loghr"
). The confidence level is specified byconfLevel
.
References
Gilbert, P. B. and Sun, Y. (2015). Inferences on relative failure rates in stratified mark-specific proportional hazards models with missing marks, with application to human immunodeficiency virus vaccine efficacy trials. Journal of the Royal Statistical Society Series C: Applied Statistics, 64(1), 49-73.
Sun, Y. and Gilbert, P. B. (2012). Estimation of stratified markāspecific proportional hazards models with missing marks. Scandinavian Journal of Statistics, 39(1), 34-52.
See Also
Examples
set.seed(20240410)
beta <- 2.1
gamma <- -1.3
n <- 200
tx <- rep(0:1, each = n / 2)
tm <- c(rexp(n / 2, 0.2), rexp(n / 2, 0.2 * exp(gamma)))
cens <- runif(n, 0, 15)
eventTime <- pmin(tm, cens, 3)
eventInd <- as.numeric(tm <= pmin(cens, 3))
alpha <- function(b){ log((1 - exp(-2)) * (b - 2) / (2 * (exp(b - 2) - 1))) }
mark0 <- log(1 - (1 - exp(-2)) * runif(n / 2)) / (-2)
mark1 <- log(1 + (beta - 2) * (1 - exp(-2)) * runif(n / 2) / (2 * exp(alpha(beta)))) /
(beta - 2)
mark <- ifelse(eventInd == 1, c(mark0, mark1), NA)
# the true TE(v) curve underlying the data-generating mechanism is:
# TE(v) = 1 - exp{alpha(beta) + beta * v + gamma}
# a binary auxiliary covariate
A <- sapply(exp(-0.5 - 0.2 * mark) / (1 + exp(-0.5 - 0.2 * mark)),
function(p){ ifelse(is.na(p), NA, rbinom(1, 1, p)) })
linPred <- 1 + 0.4 * tx - 0.2 * A
probs <- exp(linPred) / (1 + exp(linPred))
R <- rep(NA, n)
while (sum(R, na.rm = TRUE) < 10){
R[eventInd == 1] <- sapply(probs[eventInd == 1],
function(p){ rbinom(1, 1, p) })
}
# a missing-at-random mark
mark[eventInd == 1] <- ifelse(R[eventInd == 1] == 1, mark[eventInd == 1], NA)
# AIPW estimation; auxiliary covariate is used (not required)
fit <- kernel_sievePHaipw(eventTime, eventInd, mark, tx, aux = A,
auxType = "binary", formulaMiss = ~ eventTime,
formulaAux = ~ eventTime + tx + mark,
tau = 3, tband = 0.5, hband = 0.3, nvgrid = 20,
nboot = 20)
sfit <- summary(fit)
# print the formatted summary
sfit
# treatment efficacy estimates on the grid
sfit$te