preCategorize {sicegar} | R Documentation |
Checks for signal in the data.
Description
Checks if the signal is present in the data. Often a high percentage of high through-put data does not contain a signal. Checking if data does not contain signal before doing a sigmoidal or double sigmoidal fit can make the analysis of data from high-throughput experiments much faster.
Usage
preCategorize(
normalizedInput,
threshold_intensity_range = 0.1,
threshold_minimum_for_intensity_maximum = 0.3
)
Arguments
normalizedInput |
is the output of the sicegar::normalizeData() function. |
threshold_intensity_range |
minimum for intensity range, i.e. it is the lower limit for the allowed difference between the maximum and minimum of the intensities (Default is 0.1, and the values are based on actual, not the rescaled data.). |
threshold_minimum_for_intensity_maximum |
minimum allowed value for intensity maximum. (Default is 0.3, and the values are based on actual, not the rescaled data.). |
Value
Function returns a brief decision list that includes information about the decision process. Post important part of this information is decisionList$decisionwhich might be either "no_signal" or "not_no_signal".
Examples
# Example 1 with double sigmoidal data
time=seq(3, 24, 0.1)
#simulate intensity data and add noise
noise_parameter = 0.2
intensity_noise = runif(n = length(time), min = 0, max = 1) * noise_parameter
intensity = sicegar::doublesigmoidalFitFormula(time,
finalAsymptoteIntensityRatio = .3,
maximum = 4,
slope1Param = 1,
midPoint1Param = 7,
slope2Param = 1,
midPointDistanceParam = 8)
intensity <- intensity + intensity_noise
dataInput <- data.frame(intensity = intensity, time = time)
normalizedInput <- sicegar::normalizeData(dataInput, dataInputName = "sample001")
isThis_nosignal <- sicegar::preCategorize(normalizedInput = normalizedInput)
# Example 2 with no_signal data
time <- seq(3, 24, 0.1)
#simulate intensity data and add noise
noise_parameter <- 0.05
intensity_noise <- runif(n = length(time), min = 0, max = 1) * noise_parameter * 2e-04
intensity <- sicegar::doublesigmoidalFitFormula(time,
finalAsymptoteIntensityRatio = .3,
maximum = 2e-04,
slope1Param = 1,
midPoint1Param = 7,
slope2Param = 1,
midPointDistanceParam = 8)
intensity <- intensity + intensity_noise
dataInput <- data.frame(intensity=intensity, time=time)
normalizedInput <- sicegar::normalizeData(dataInput,dataInputName = "sample001")
isThis_nosignal <- sicegar::preCategorize(normalizedInput = normalizedInput)