predict_kinematics {shorts} | R Documentation |
Kinematics prediction functions
Description
Predicts kinematic from known MSS
and MAC
parameters
Usage
predict_velocity_at_time(time, MSS, MAC)
predict_distance_at_time(time, MSS, MAC)
predict_acceleration_at_time(time, MSS, MAC)
predict_time_at_distance(distance, MSS, MAC)
predict_time_at_distance_FV(
distance,
F0,
V0,
bodymass = 75,
inertia = 0,
resistance = 0,
...
)
predict_velocity_at_distance(distance, MSS, MAC)
predict_acceleration_at_distance(distance, MSS, MAC)
predict_acceleration_at_velocity(velocity, MSS, MAC)
predict_air_resistance_at_time(time, MSS, MAC, ...)
predict_air_resistance_at_distance(distance, MSS, MAC, ...)
predict_force_at_velocity(
velocity,
MSS,
MAC,
bodymass = 75,
inertia = 0,
resistance = 0,
...
)
predict_force_at_time(
time,
MSS,
MAC,
bodymass = 75,
inertia = 0,
resistance = 0,
...
)
predict_force_at_distance(
distance,
MSS,
MAC,
bodymass = 75,
inertia = 0,
resistance = 0,
...
)
predict_power_at_distance(
distance,
MSS,
MAC,
bodymass = 75,
inertia = 0,
resistance = 0,
...
)
predict_power_at_time(
time,
MSS,
MAC,
bodymass = 75,
inertia = 0,
resistance = 0,
...
)
predict_relative_power_at_distance(
distance,
MSS,
MAC,
bodymass = 75,
inertia = 0,
resistance = 0,
...
)
predict_relative_power_at_time(
time,
MSS,
MAC,
bodymass = 75,
inertia = 0,
resistance = 0,
...
)
predict_work_till_time(time, ...)
predict_work_till_distance(distance, ...)
predict_kinematics(
object = NULL,
MSS,
MAC,
max_time = 6,
frequency = 100,
bodymass = 75,
inertia = 0,
resistance = 0,
add_inertia_to_vertical = TRUE,
...
)
Arguments
time , distance , velocity |
Numeric vectors |
MSS , MAC |
Numeric vectors. Model parameters |
F0 , V0 |
Numeric vectors. FV profile parameters |
bodymass |
Body mass in kg. Used to calculate relative power and forwarded to |
inertia |
External inertia in kg (for example a weight vest, or a sled). Not included in the air resistance calculation |
resistance |
External horizontal resistance in Newtons (for example tether device or a sled friction resistance) |
... |
Arguments passed on to
|
object |
If |
max_time |
Predict from 0 to |
frequency |
Number of samples within one second. Default is 100Hz |
add_inertia_to_vertical |
Should inertia be added to |
Value
Numeric vector
Data frame with kinetic and kinematic variables
References
Haugen TA, Tønnessen E, Seiler SK. 2012. The Difference Is in the Start: Impact of Timing and Start Procedure on Sprint Running Performance: Journal of Strength and Conditioning Research 26:473–479. DOI: 10.1519/JSC.0b013e318226030b.
Jovanović, M., Vescovi, J.D. (2020). shorts: An R Package for Modeling Short Sprints. Preprint available at SportRxiv. https://doi.org/10.31236/osf.io/4jw62
Samozino P. 2018. A Simple Method for Measuring Force, Velocity and Power Capabilities and Mechanical Effectiveness During Sprint Running. In: Morin J-B, Samozino P eds. Biomechanics of Training and Testing. Cham: Springer International Publishing, 237–267. DOI: 10.1007/978-3-319-05633-3_11.
Examples
MSS <- 8
MAC <- 9
time_seq <- seq(0, 6, length.out = 10)
df <- data.frame(
time = time_seq,
distance_at_time = predict_distance_at_time(time_seq, MSS, MAC),
velocity_at_time = predict_velocity_at_time(time_seq, MSS, MAC),
acceleration_at_time = predict_acceleration_at_time(time_seq, MSS, MAC)
)
df$time_at_distance <- predict_time_at_distance(df$distance_at_time, MSS, MAC)
df$velocity_at_distance <- predict_velocity_at_distance(df$distance_at_time, MSS, MAC)
df$acceleration_at_distance <- predict_acceleration_at_distance(df$distance_at_time, MSS, MAC)
df$acceleration_at_velocity <- predict_acceleration_at_velocity(df$velocity_at_time, MSS, MAC)
# Power calculation uses shorts::get_air_resistance function and its defaults
# values to calculate power. Use the ... to setup your own parameters for power
# calculations
df$power_at_time <- predict_power_at_time(
time = df$time, MSS = MSS, MAC = MAC,
# Check shorts::get_air_resistance for available params
bodymass = 100, bodyheight = 1.85
)
df
# Example for predict_kinematics
split_times <- data.frame(
distance = c(5, 10, 20, 30, 35),
time = c(1.20, 1.96, 3.36, 4.71, 5.35)
)
# Simple model
simple_model <- with(
split_times,
model_timing_gates(distance, time)
)
predict_kinematics(simple_model)