ames_mlp_itr {shinymodels} | R Documentation |
Iterative optimization of neural network
Description
This object has the results when a neural network was tuned using Bayesian optimization and a validation set.
Details
The code used to produce this object:
data(ames) ames <- ames %>% select(Sale_Price, Neighborhood, Longitude, Latitude, Year_Built) %>% mutate(Sale_Price = log10(ames$Sale_Price)) set.seed(1) ames_rs <- validation_split(ames) ames_rec <- recipe(Sale_Price ~ ., data = ames) %>% step_dummy(all_nominal_predictors()) %>% step_zv(all_predictors()) %>% step_normalize(all_predictors()) mlp_spec <- mlp(hidden_units = tune(), penalty = tune(), epochs = tune()) %>% set_mode("regression") set.seed(1) ames_mlp_itr <- mlp_spec %>% tune_bayes( ames_rec, resamples = ames_rs, initial = 5, iter = 4, control = control_bayes(save_pred = TRUE) )
Value
An object with primary class iteration_results
.
[Package shinymodels version 0.1.1 Index]