get_confint {shinyCox} | R Documentation |
Get confidence intervals for predicted survival curves
Description
Creates confidence levels for plotting predicted survival curves.
Usage
get_confint(p, se, conf.type, conf.int, ulimit = TRUE)
Arguments
p |
Vector of survival probabilities |
se |
Vector of standard errors |
conf.type |
Type of confidence interval, includes 'plain', 'log', 'log-log', 'logit', and 'arcsin'. |
conf.int |
The level for two-sided confidence interval on the predicted survival curve, default is 0.95. |
ulimit |
Should upper bound be limited to 1, default is 'TRUE' |
Value
list of length two, containing the lower and upper confidence levels
Examples
library(survival)
library(shinyCox)
colondeaths <- colon[colon$etype == 2, ]
split_colon <- split(colondeaths, colondeaths$rx)
colon_arm1 <- split_colon$Obs
colon1ph <- coxph(Surv(time, status) ~ factor(extent) + nodes + strata(surg)
+ factor(differ),
colon_arm1,
x = TRUE, model = TRUE)
new.data = cbind.data.frame(`factor(extent)` = 3,
`surg` = "surg=0",`factor(differ)` = 2,`nodes` = 5)
coxfit = prep_coxfit(colon1ph)
coxlist = surv_pred_info(colon1ph)
for_ci = predict_se(coxlist, coxfit, new.data)
get_confint(for_ci$surv, for_ci$std.err, conf.int = 0.95,
conf.type = "log-log")
[Package shinyCox version 1.1.0 Index]