summarizeBaseline {shazam} | R Documentation |
Calculate BASELINe summary statistics
Description
summarizeBaseline
calculates BASELINe statistics such as the mean selection
strength (mean Sigma), the 95% confidence intervals and p-values for the presence of
selection.
Usage
summarizeBaseline(baseline, returnType = c("baseline", "df"), nproc = 1)
Arguments
baseline |
|
returnType |
One of |
nproc |
number of cores to distribute the operation over. If
|
Details
The returned p-value can be either positive or negative. Its magnitude (without the sign) should be interpreted as per normal. Its sign indicates the direction of the selection detected. A positive p-value indicates positive selection, whereas a negative p-value indicates negative selection.
Value
Either a modified Baseline
object or data.frame containing the
mean BASELINe selection strength, its 95% confidence intervals, and
a p-value for the presence of selection.
References
Uduman M, et al. Detecting selection in immunoglobulin sequences. Nucleic Acids Res. 2011 39(Web Server issue):W499-504.
See Also
See calcBaseline for generating Baseline
objects and
groupBaseline for convolving groups of BASELINe PDFs.
Examples
# Subset example data
data(ExampleDb, package="alakazam")
db <- subset(ExampleDb, c_call == "IGHG")
set.seed(112)
db <- dplyr::slice_sample(db, n=100)
# Collapse clones
db <- collapseClones(db, cloneColumn="clone_id",
sequenceColumn="sequence_alignment",
germlineColumn="germline_alignment_d_mask",
method="thresholdedFreq", minimumFrequency=0.6,
includeAmbiguous=FALSE, breakTiesStochastic=FALSE)
# Calculate BASELINe
baseline <- calcBaseline(db,
sequenceColumn="clonal_sequence",
germlineColumn="clonal_germline",
testStatistic="focused",
regionDefinition=IMGT_V,
targetingModel=HH_S5F,
nproc = 1)
# Grouping the PDFs by the sample annotation
grouped <- groupBaseline(baseline, groupBy="sample_id")
# Get a data.frame of the summary statistics
stats <- summarizeBaseline(grouped, returnType="df")