| estimate_number_hyperplanes {shattering} | R Documentation | 
Function to estimate the number of hyperplanes required to classify such a data sample.
Description
This function estimates the number of hyperplanes
Usage
estimate_number_hyperplanes(
  X,
  Y,
  length = 20,
  quantile.percentage = 0.05,
  epsilon = 1e-07
)
Arguments
| X | matrix indentifying the input space of variables | 
| Y | numerical vector indentifying the output space of variables | 
| length | number of data points used to estimate the shattering coefficient | 
| quantile.percentage | real number to define the quantile of distances to be considered (e.g. 0.1 means 10%) | 
| epsilon | a real threshold to be removed from distances in order to measure the open balls in the underlying topology | 
Value
A data frame whose columns are: (1) the original sample size; (2) the reduced sample size after connecting homogeneous space regions; (3) the lower bound for the number of hyperplanes required to shatter the input space; and (4) the upper bound for the number of hyperplanes required to shatter the input space
Examples
# Generating some random dataset with 2 classes:
# 50 examples in class 1 and 50 in class 2 (last column)
data = cbind(rnorm(mean=1, sd=1, n=50), rnorm(mean=1, sd=1, n=50), rep(1, 50))
data = rbind(data, cbind(rnorm(mean=-1, sd=1, n=50), rnorm(mean=-1, sd=1, n=50), rep(2, 50)))
# Building up the input and output sets
X = data[,1:2]
Y = data[,3]
# Plotting our dataset using classes as colors
plot(X, col=Y, main="Original dataset", xlab="Attribute 1", ylab="Attribute 2")
# Here we estimate the number of hyperplanes required to shatter (divide) the given sample
# in all possible ways according to the organization of points in the input space
Hyperplanes = estimate_number_hyperplanes(X, Y, length=10, quantile.percentage=0.1, epsilon=1e-7)
[Package shattering version 1.0.7 Index]