DR_sharpen {sharpPen} | R Documentation |
Shape-Constrained Local Linear Regression via Douglas-Rachford
Description
Local linear regression is applied to bivariate data. The response is ‘sharpened’ or perturbed in a way to render a curve estimate that satisfies some specified shape constraints.
Usage
DR_sharpen(
x, y, xgrid=NULL, M=200, h=NULL, mode=NULL,
ratio_1=0.14,ratio_2=0.14,ratio_3=0.14,ratio_4=0.14,
constraint_1=NULL, constraint_2=NULL, constraint_3=NULL,
constraint_4=NULL, norm="l2", augmentation=FALSE, maxit = 10^5)
Arguments
x |
a vector of explanatory variable observations |
y |
binary vector of responses |
xgrid |
gridpoints on x-axis where estimates are taken |
M |
number of equally-spaced gridpoints (if xgrid not specified) |
h |
bandwidth |
mode |
the location of the peak on the x-axis, valid in the unimode case |
ratio_1 |
control the first derivative shape constraint gap aroud the peak, valid in the unimode case |
ratio_2 |
control the second derivative shape constraint gap aroud the peak, valid in the unimode case |
ratio_3 |
control the third derivative shape constraint gap aroud the peak, valid in the unimode case |
ratio_4 |
control the fourth derivative shape constraint gap aroud the peak, valid in the unimode case |
constraint_1 |
a vector of the first derivative shape constraint |
constraint_2 |
a vector of the second derivative shape constraint |
constraint_3 |
a vector of the third derivative shape constraint |
constraint_4 |
a vector of the fourth derivative shape constraint |
norm |
the smallest possible distance type: "l2", "l1" or "linf". Default is "l2" |
augmentation |
data augmentation: "TRUE" or "FALSE", default is "FALSE" |
maxit |
maximum iterarion number, default is 10^5 |
Details
Data are perturbed the smallest possible L2 or L1 or Linf distance subject to the constraint that the local linear estimate satisfies some specified shape constraints.
Value
ysharp |
sharpened responses |
iteration |
number of iterations the function has been spend for the convergence |
Author(s)
D.Wang and W.J.Braun
References
Wang, D. (2022). Penalized and constrained data sharpening methods for kernel regression (Doctoral dissertation, University of British Columbia).
Examples
set.seed(1234567)
gam<-4
g <- function(x) (3*sin(x*(gam*pi))+5*cos(x*(gam*pi))+6*x)*x
n<-100
M<-200
noise <- 1
x<-sort(runif(n,0,1))
y<-g(x)+rnorm(n,sd=noise)
z<- seq(min(x)+1/M, max(x)-1/M, length=M) ############xgrid points
h1<-dpill(x,y)
A<-lprOperator(h=h1,x=x,z=z,p=1)
local_fit<-t(A)
ss_1<-c(sign(numericalDerivative(z,g,k=1)))
DR_sharpen(x=x, y=y, xgrid=z, h=h1, constraint_1=ss_1, norm="linf",maxit =10^3)