CVsharp {sharpData} | R Documentation |
Cross-Validation Bandwidth Selector for Local Polynomial Regression
Description
Cross-validation bandwidth selector for iterated sharpened responses for bias reduction in function estimation.
Usage
CVsharp(x, y, deg, nsteps)
Arguments
x |
a numeric vector containing the predictor variable values. |
y |
a numeric vector containing the response variable values. |
deg |
a numeric vector containing the local polynomial degree used. |
nsteps |
a numeric vector containing the number of iteration steps. |
Details
If nsteps is specified to be 0, then the CV bandwidth for conventional local polynomial regression is provided.
Value
a list containing 3 elements: the candidate bandwidths; the corresponding CV scores; the selected optimal bandwidth.
Author(s)
W.J. Braun
See Also
locpoly
Examples
speed <- MPG[, 1]
mpg <- MPG[, 2]
h <- CVsharp(speed, mpg, 0, 0)$CVh # conventional local constant regression bandwidth
mpg.l0 <- locpoly(speed, mpg, bandwidth=h, degree=0)
h <- CVsharp(speed, mpg, 0, 1)$CVh # 1-sharpened local constant regression bandwidth
mpgSharp <- sharpiteration(speed, mpg, 0, h, 1)
mpg.l1 <- locpoly(speed, mpgSharp[[1]], bandwidth=h, degree=0)
h <- CVsharp(speed, mpg, 0, 5)$CVh # 5-sharpened local constant regression bandwidth
mpgSharp <- sharpiteration(speed, mpg, 0, h, 5)
mpg.l5 <- locpoly(speed, mpgSharp[[5]], bandwidth=h, degree=0)
plot(mpg ~ speed)
lines(mpg.l0) # unsharpened function estimation
lines(mpg.l1, col=2, lty=2) # sharpened function estimation (1 steps)
lines(mpg.l5, col=4, lty=3) # sharpened function estimation (5 steps)
[Package sharpData version 1.4 Index]