| PAMClustering {sharp} | R Documentation |
(Weighted) Partitioning Around Medoids
Description
Runs Partitioning Around Medoids (PAM) clustering using implementation from
pam. This is also known as the k-medoids algorithm. If
Lambda is provided, clustering is applied on the weighted distance
matrix calculated using the COSA algorithm as implemented in
cosa2. Otherwise, distances are calculated using
dist. This function is not using stability.
Usage
PAMClustering(xdata, nc = NULL, Lambda = NULL, distance = "euclidean", ...)
Arguments
xdata |
data matrix with observations as rows and variables as columns. |
nc |
matrix of parameters controlling the number of clusters in the
underlying algorithm specified in |
Lambda |
vector of penalty parameters (see argument |
distance |
character string indicating the type of distance to use. If
|
... |
additional parameters passed to |
Value
A list with:
comembership |
an array of binary and symmetric co-membership matrices. |
weights |
a matrix of median weights by feature. |
References
Kampert MM, Meulman JJ, Friedman JH (2017). “rCOSA: A Software Package for Clustering Objects on Subsets of Attributes.” Journal of Classification, 34(3), 514–547. doi:10.1007/s00357-017-9240-z.
Friedman JH, Meulman JJ (2004). “Clustering objects on subsets of attributes (with discussion).” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(4), 815-849. doi:10.1111/j.1467-9868.2004.02059.x, https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9868.2004.02059.x, https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2004.02059.x.
See Also
Other clustering algorithms:
DBSCANClustering(),
GMMClustering(),
HierarchicalClustering(),
KMeansClustering()
Examples
if (requireNamespace("cluster", quietly = TRUE)) {
# Data simulation
set.seed(1)
simul <- SimulateClustering(n = c(10, 10), pk = 50)
# PAM clustering
myclust <- PAMClustering(
xdata = simul$data,
nc = seq_len(20)
)
# Weighted PAM clustering (using COSA)
if (requireNamespace("rCOSA", quietly = TRUE)) {
myclust <- PAMClustering(
xdata = simul$data,
nc = seq_len(20),
Lambda = c(0.2, 0.5)
)
}
}