dgBeta {sgr} | R Documentation |
Generalized Beta Distribution.
Description
The generalized beta distribution extends the classical beta distribution beyond the [0,1] range (Whitby, 1971).
Usage
dgBeta(x, a = min(x), b = max(x), gam = 1, del = 1)
Arguments
x |
Vector of quantilies. |
a |
Minimum of range of r.v. |
b |
Maximum of range of r.v. |
gam |
Gamma parameter. |
del |
Delta parameter. |
Details
The Generalized Beta Distribution is defined as follows:
where is the beta function. The parameters
and
(with
) are the left and right end points, respectively. The parameters
and
are the governing shape parameters for
and
respectively. For all the values of
the r.v.
that fall outside the interval
,
simply takes value 0. The
generalized beta distribution reduces to the beta distribution when
and
.
Value
Gives the density.
Author(s)
Massimiliano Pastore & Luigi Lombardi
References
Whitby, O. (1971). Estimation of parameters in the generalized beta distribution (Technical Report NO. 29). Department of Statistics: Standford University.
See Also
Examples
curve(dgBeta(x))
curve(dgBeta(x,gam=3,del=3))
curve(dgBeta(x,gam=1.5,del=2.5))
x <- 1:7
GA <- c(1,3,1.5,8); DE <- c(1,3,4,2.5)
par(mfrow=c(2,2))
for (j in 1:4) {
plot(x,dgBeta(x,gam=GA[j],del=DE[j]),type="h",
panel.first=points(x,dgBeta(x,gam=GA[j],del=DE[j]),pch=19),
main=paste("gamma=",GA[j]," delta=",DE[j],sep=""),ylim=c(0,.6),
ylab="dgBeta(x)")
}