dgBeta {sgr} | R Documentation |
Generalized Beta Distribution.
Description
The generalized beta distribution extends the classical beta distribution beyond the [0,1] range (Whitby, 1971).
Usage
dgBeta(x, a = min(x), b = max(x), gam = 1, del = 1)
Arguments
x |
Vector of quantilies. |
a |
Minimum of range of r.v. |
b |
Maximum of range of r.v. |
gam |
Gamma parameter. |
del |
Delta parameter. |
Details
The Generalized Beta Distribution is defined as follows:
G(x;a,b,\gamma,\delta) = \frac{1}{B(\gamma,\delta)(b-a)^{\gamma+\delta-1}}
(x-a)^{\gamma-1}(b-x)^{\delta-1}
where B(\gamma,\delta)
is the beta function. The parameters a \in R
and
b \in R
(with a < b
) are the left and right end points, respectively. The parameters \gamma > 0
and \delta > 0
are the governing shape parameters for a
and b
respectively. For all the values of
the r.v. X
that fall outside the interval [a, b]
, G
simply takes value 0. The
generalized beta distribution reduces to the beta distribution when a = 0
and
b = 1
.
Value
Gives the density.
Author(s)
Massimiliano Pastore & Luigi Lombardi
References
Whitby, O. (1971). Estimation of parameters in the generalized beta distribution (Technical Report NO. 29). Department of Statistics: Standford University.
See Also
Examples
curve(dgBeta(x))
curve(dgBeta(x,gam=3,del=3))
curve(dgBeta(x,gam=1.5,del=2.5))
x <- 1:7
GA <- c(1,3,1.5,8); DE <- c(1,3,4,2.5)
par(mfrow=c(2,2))
for (j in 1:4) {
plot(x,dgBeta(x,gam=GA[j],del=DE[j]),type="h",
panel.first=points(x,dgBeta(x,gam=GA[j],del=DE[j]),pch=19),
main=paste("gamma=",GA[j]," delta=",DE[j],sep=""),ylim=c(0,.6),
ylab="dgBeta(x)")
}