amse {sgr}R Documentation

Average root mean square error

Description

Average root mean square error (AMSE).

Usage

amse(Bpar, B0)

Arguments

Bpar

Matrix with dimension BB (replicates) ×P\times P (parameters).

B0

Vector of true parameter values.

Details

Let θ^ij\hat{\theta}_{ij} be the estimated parameter value for the jjth parameter in the iith sample (replicate), i=1,2,Bi = 1, 2, \ldots B, j=1,2,Pj = 1, 2, \ldots P, and let θj\theta_{j} be the corresponding true parameter value, the Average root mean square error is defined as follows:

AMSE=1Bi1Pj[θ^ijθjθj]2AMSE=\frac{1}{B}\sum_{i}\sqrt{\frac{1}{P} \sum_{j} \left[ \frac{\hat{\theta}_{ij}-\theta_{j}}{\theta_{j}} \right]^2}

Value

Gives the AMSE value.

Note

If θj=0\theta_{j} = 0, the ratio [θ^ijθjθj]\left[ \frac{\hat{\theta}_{ij}-\theta_{j}}{\theta_{j}} \right] is modified as follows: [θ^ij01]\left[ \frac{\hat{\theta}_{ij}-0}{1} \right]

Author(s)

Massimiliano Pastore & Luigi Lombardi

References

Yang-Wallentin, F., Joreskog, K. G., Luo, H. (2010). Confirmatory Factor Analysis of Ordinal Variables With Misspecified Models, Structural Equation Modeling: A Multidisciplinary Journal, 17, 392-423.

See Also

arb


[Package sgr version 1.3.1 Index]