| amse {sgr} | R Documentation |
Average root mean square error
Description
Average root mean square error (AMSE).
Usage
amse(Bpar, B0)
Arguments
Bpar |
Matrix with dimension |
B0 |
Vector of true parameter values. |
Details
Let \hat{\theta}_{ij} be the estimated parameter value for the jth
parameter in the ith sample (replicate), i = 1, 2, \ldots B, j = 1, 2, \ldots P,
and let \theta_{j} be the corresponding true parameter value, the Average root mean square error is defined as follows:
AMSE=\frac{1}{B}\sum_{i}\sqrt{\frac{1}{P} \sum_{j} \left[ \frac{\hat{\theta}_{ij}-\theta_{j}}{\theta_{j}} \right]^2}
Value
Gives the AMSE value.
Note
If \theta_{j} = 0, the ratio \left[ \frac{\hat{\theta}_{ij}-\theta_{j}}{\theta_{j}} \right] is modified as follows: \left[ \frac{\hat{\theta}_{ij}-0}{1} \right]
Author(s)
Massimiliano Pastore & Luigi Lombardi
References
Yang-Wallentin, F., Joreskog, K. G., Luo, H. (2010). Confirmatory Factor Analysis of Ordinal Variables With Misspecified Models, Structural Equation Modeling: A Multidisciplinary Journal, 17, 392-423.