per.variance {sgPLS} | R Documentation |
Percentage of variance of the Y
matrix explained by the score-vectors obtained by PLS approaches
Description
The per.variance
function computes the percentage of variance of the Y
matrix explained by the score-vectors obtained by PLS approaches (sPLS, gPLS or sgPLS) in a regression mode.
Usage
per.variance(object)
Arguments
object |
object of class inheriting from |
Value
per.variance
produces a list with the following components:
perX |
Percentage of variance of the |
cum.perX |
The cumulative of the percentage of variance of the |
Author(s)
Benoit Liquet, b.liquet@uq.edu.au,
Pierre Lafaye de Micheaux lafaye@dms.umontreal.ca
Examples
## Not run:
## Simulation of datasets X and Y with group variables
n <- 100
sigma.gamma <- 1
sigma.e <- 1.5
p <- 400
q <- 500
theta.x1 <- c(rep(1, 15), rep(0, 5), rep(-1, 15), rep(0, 5), rep(1.5, 15),
rep(0, 5), rep(-1.5, 15), rep(0, 325))
theta.x2 <- c(rep(0, 320), rep(1, 15), rep(0, 5), rep(-1, 15), rep(0, 5),
rep(1.5, 15), rep(0, 5), rep(-1.5, 15), rep(0, 5))
theta.y1 <- c(rep(1, 15), rep(0, 5), rep(-1, 15), rep(0, 5), rep(1.5, 15),
rep(0, 5), rep(-1.5, 15), rep(0, 425))
theta.y2 <- c(rep(0, 420), rep(1, 15), rep(0, 5), rep(-1, 15), rep(0, 5),
rep(1.5, 15), rep(0, 5), rep(-1.5, 15), rep(0, 5))
Sigmax <- matrix(0, nrow = p, ncol = p)
diag(Sigmax) <- sigma.e ^ 2
Sigmay <- matrix(0, nrow = q, ncol = q)
diag(Sigmay) <- sigma.e ^ 2
set.seed(125)
gam1 <- rnorm(n)
gam2 <- rnorm(n)
X <- matrix(c(gam1, gam2), ncol = 2, byrow = FALSE) %*% matrix(c(theta.x1, theta.x2),
nrow = 2, byrow = TRUE) + rmvnorm(n, mean = rep(0, p), sigma =
Sigmax, method = "svd")
Y <- matrix(c(gam1, gam2), ncol = 2, byrow = FALSE) %*% matrix(c(theta.y1, theta.y2),
nrow = 2, byrow = TRUE) + rmvnorm(n, mean = rep(0, q), sigma =
Sigmay, method = "svd")
ind.block.x <- seq(20, 380, 20)
ind.block.y <- seq(20, 480, 20)
#### gPLS model
model.sgPLS <- sgPLS(X, Y, ncomp = 2, mode = "regression", keepX = c(4, 4),
keepY = c(4, 4), ind.block.x = ind.block.x,
ind.block.y = ind.block.y,
alpha.x = c(0.5, 0.5), alpha.y = c(0.5, 0.5))
result.sgPLS <- select.sgpls(model.sgPLS)
result.sgPLS$group.size.X
result.sgPLS$group.size.Y
#### gPLS model
model.gPLS <- gPLS(X, Y, ncomp = 2, mode = "regression", keepX = c(4, 4),
keepY = c(4, 4), ind.block.x = ind.block.x ,ind.block.y = ind.block.y)
result.gPLS <- select.sgpls(model.gPLS)
result.gPLS$group.size.X
result.gPLS$group.size.Y
per.variance(model.gPLS)
per.variance(model.sgPLS)
## End(Not run)
[Package sgPLS version 1.8 Index]