tidyverse {sftime} | R Documentation |
'tidyverse' methods for sftime
objects
Description
'tidyverse' methods for sftime
objects. Geometries are sticky, use
as.data.frame
to let dplyr
's own methods drop them. Use
these methods without the .sftime
suffix and after loading the
'tidyverse' package with the generic (or after loading package 'tidyverse').
Usage
inner_join.sftime(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
left_join.sftime(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
right_join.sftime(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
full_join.sftime(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
semi_join.sftime(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
anti_join.sftime(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
filter.sftime(.data, ..., .dots)
arrange.sftime(.data, ..., .dots)
group_by.sftime(.data, ..., add = FALSE)
ungroup.sftime(.data, ...)
rowwise.sftime(.data, ...)
mutate.sftime(.data, ..., .dots)
transmute.sftime(.data, ..., .dots)
select.sftime(.data, ...)
rename.sftime(.data, ...)
slice.sftime(.data, ..., .dots)
summarise.sftime(.data, ..., .dots, do_union = TRUE, is_coverage = FALSE)
summarize.sftime(.data, ..., .dots, do_union = TRUE, is_coverage = FALSE)
distinct.sftime(.data, ..., .keep_all = FALSE)
## S3 method for class 'sftime'
gather(
data,
key,
value,
...,
na.rm = FALSE,
convert = FALSE,
factor_key = FALSE
)
## S3 method for class 'sftime'
pivot_longer(
data,
cols,
names_to = "name",
names_prefix = NULL,
names_sep = NULL,
names_pattern = NULL,
names_ptypes = NULL,
names_transform = NULL,
names_repair = "check_unique",
values_to = "value",
values_drop_na = FALSE,
values_ptypes = NULL,
values_transform = NULL,
...
)
## S3 method for class 'sftime'
spread(data, key, value, fill = NA, convert = FALSE, drop = TRUE, sep = NULL)
sample_n.sftime(
tbl,
size,
replace = FALSE,
weight = NULL,
.env = parent.frame()
)
sample_frac.sftime(
tbl,
size = 1,
replace = FALSE,
weight = NULL,
.env = parent.frame()
)
## S3 method for class 'sftime'
nest(.data, ...)
## S3 method for class 'sftime'
unnest(data, ..., .preserve = NULL)
## S3 method for class 'sftime'
separate(
data,
col,
into,
sep = "[^[:alnum:]]+",
remove = TRUE,
convert = FALSE,
extra = "warn",
fill = "warn",
...
)
## S3 method for class 'sftime'
unite(data, col, ..., sep = "_", remove = TRUE)
## S3 method for class 'sftime'
separate_rows(data, ..., sep = "[^[:alnum:]]+", convert = FALSE)
Arguments
x |
An object of class |
y |
A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames (e.g. from dbplyr or dtplyr). See Methods, below, for more details. |
by |
A character vector of variables to join by. If To join by different variables on To join by multiple variables, use a vector with length > 1.
For example, To perform a cross-join, generating all combinations of |
copy |
If |
suffix |
If there are non-joined duplicate variables in |
... |
other arguments |
.data |
An object of class |
.dots |
see corresponding function in package |
add |
see corresponding function in dplyr |
do_union |
logical; in case |
is_coverage |
logical; if |
.keep_all |
see corresponding function in dplyr |
data |
see original function docs |
key |
see original function docs |
value |
see original function docs |
na.rm |
see original function docs |
convert |
see separate_rows |
factor_key |
see original function docs |
cols |
< |
names_to |
A string specifying the name of the column to create
from the data stored in the column names of Can be a character vector, creating multiple columns, if
|
names_prefix |
A regular expression used to remove matching text from the start of each variable name. |
names_sep |
If
If these arguments do not give you enough control, use
|
names_pattern |
If
If these arguments do not give you enough control, use
|
names_ptypes |
A list of column name-prototype pairs.
A prototype (or ptype for short) is a zero-length vector (like If not specified, the type of the columns generated from |
names_transform |
A list of column name-function pairs.
Use these arguments if you need to change the type of specific columns.
For example, |
names_repair |
What happens if the output has invalid column names?
The default, |
values_to |
A string specifying the name of the column to create
from the data stored in cell values. If |
values_drop_na |
If |
values_ptypes |
A list of column name-prototype pairs.
A prototype (or ptype for short) is a zero-length vector (like If not specified, the type of the columns generated from |
values_transform |
A list of column name-function pairs.
Use these arguments if you need to change the type of specific columns.
For example, |
fill |
see original function docs |
drop |
see original function docs |
sep |
see separate_rows |
tbl |
see original function docs |
size |
see original function docs |
replace |
see original function docs |
weight |
see original function docs |
.env |
see original function docs |
.preserve |
see unnest |
col |
see separate |
into |
see separate |
remove |
see separate |
extra |
see separate |
Value
For
_join
methods: An object of classsftime
representing the joining result ofx
andy
. Seemutate-joins
.For
filter
: Seefilter
.For
arrange
: Seearrange
.For
group_by
andungroup
: A groupedsftime
object. Seearrange
.For
rowwise
: Ansftime
object. Seerowwise
.For
mutate
andtransmute
: Seemutate
.For
select
: Seeselect
. If the active time column is not explicitly selected, asf
object is returned.For
rename
: Seerename
.For
slice
: Seeslice
.For
summarize
andsummarise
: Seesummarise
.For
distinct
: Seedistinct
.For
gather
: Seegather
.
Examples
g1 <- st_sfc(st_point(1:2), st_point(c(5, 8)), st_point(c(2, 9)))
x1 <- st_sftime(a = 1:3, geometry = g1, time = Sys.time())
g2 <- st_sfc(st_point(c(4, 6)), st_point(c(4, 6)), st_point(c(4, 6)))
x2 <- st_sftime(a = 2:4, geometry = g2, time = Sys.time())
library(dplyr)
## inner_join
inner_join(x1, as.data.frame(x2), by = "a") # note: the active time column is
# time.x and the active geometry column geometry.x
inner_join(x2, as.data.frame(x1), by = "a")
## left_join
left_join(x1, as.data.frame(x2), by = "a")
left_join(x2, as.data.frame(x1), by = "a")
## right_join
right_join(x1, as.data.frame(x2), by = "a")
right_join(x2, as.data.frame(x1), by = "a")
## full_join
full_join(x1, as.data.frame(x2), by = "a")
full_join(x2, as.data.frame(x1), by = "a")
## semi_join
semi_join(x1, as.data.frame(x2), by = "a")
semi_join(x2, as.data.frame(x1), by = "a")
## anti_join
anti_join(x1, as.data.frame(x2), by = "a")
anti_join(x2, as.data.frame(x1), by = "a")
## filter
filter(x1, a <= 2)
## arrange
arrange(x1, dplyr::desc(a))
## group_by
group_by(x1, time)
## ungroup
ungroup(group_by(x1, time))
## rowwise
x1 %>%
mutate(a1 = 5:7) %>%
rowwise() %>%
mutate(a2 = mean(a, a1))
## mutate
x1 %>%
mutate(a1 = 5:7)
## transmute
x1 %>%
transmute(a1 = 5:7)
## select
x1 %>%
select(-time) %>%
select(geometry)
## rename
x1 %>%
rename(a1 = a)
## slice
x1 %>%
slice(1:2)
## summarise
x1 %>%
summarise(time = mean(time))
x1 %>%
summarize(time = mean(time))
## distinct
x1 %>%
distinct(geometry)
## gather
library(tidyr)
x1 %>%
mutate(a1 = 5:7) %>%
gather(key = "variable", value = "value", a, a1)
## pivot_longer
x1 %>%
mutate(a1 = 5:7) %>%
pivot_longer(cols = c("a", "a1"), names_to = "variable", values_to = "value")
## spread
x1 %>%
mutate(a1 = 5:7) %>%
gather(key = "variable", value = "value", a, a1) %>%
spread(key = "variable", value = "value")
## sample_n
set.seed(234)
x1 %>%
sample_n(size = 10, replace = TRUE)
## sample_frac
x1 %>%
sample_frac(size = 10, replace = TRUE) %>%
sample_frac(size = 0.1, replace = FALSE)
## nest
x1 %>%
nest(a1 = -time)
## unnest
x1 %>%
mutate(a1 = list(1, c(1, 2), 5)) %>%
unnest(a1)
## separate
x1 %>%
mutate(x = c(NA, "a.b", "a.d")) %>%
separate(x, c("A", "B"))
## unite
x1 %>%
mutate(x = c(NA, "a.b", "a.d")) %>%
separate(x, c("A", "B")) %>%
unite(x, c("A", "B"))
## separate_rows
x1 %>%
mutate(z = c("1", "2,3,4", "5,6")) %>%
separate_rows(z, convert = TRUE)