register_tsne {seriation} | R Documentation |
Register Seriation Based on 1D t-SNE
Description
Use t-distributed stochastic neighbor embedding (t-SNE) for seriate()
.
Usage
register_tsne()
Details
Registers the method "tsne"
for seriate()
. This method applies
1D t-SNE to a data matrix or a distance matrix and extracts the order
from the 1D embedding. To speed up the process, an initial embedding is
created using 1D multi-dimensional scaling (MDS) or principal
comonents analysis (PCA) which is improved by t-SNE.
The control
parameter "mds"
or "pca"
controls if MDS (for distances)
or PCA (for data matrices) is used to create an
initial embedding. See Rtsne::Rtsne()
to learn about the other
available control
parameters.
Perplexity is automatically set as the minimum between 30 and the number of
observations. It can be also specified using the control parameter
"preplexity"
.
Note: Package Rtsne needs to be installed.
Value
Nothing.
References
van der Maaten, L.J.P. & Hinton, G.E., 2008. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research, 9, pp.2579-2605.
See Also
Other seriation:
register_DendSer()
,
register_GA()
,
register_optics()
,
register_smacof()
,
register_umap()
,
registry_for_seriaiton_methods
,
seriate()
,
seriate_best()
Examples
## Not run:
register_tsne()
# distances
get_seriation_method("dist", "tsne")
data(SupremeCourt)
d <- as.dist(SupremeCourt)
o <- seriate(d, method = "tsne", verbose = TRUE)
pimage(d, o)
# look at the returned configuration and plot it
attr(o[[1]], "configuration")
plot_config(o)
# the t-SNE results are also available as an attribute (see ? Rtsne::Rtsne)
attr(o[[1]], "model")
## matrix
get_seriation_method("matrix", "tsne")
data("Zoo")
x <- Zoo
x[,"legs"] <- (x[,"legs"] > 0)
# t-SNE does not allow duplicates
x <- x[!duplicated(x), , drop = FALSE]
class <- x$class
label <- rownames(x)
x <- as.matrix(x[,-17])
o <- seriate(x, method = "tsne", eta = 10, verbose = TRUE)
pimage(x, o, prop = FALSE, row_labels = TRUE, col_labels = TRUE)
# look at the row embedding
plot_config(o[[1]], col = class)
## End(Not run)