size.cor {seqtest} | R Documentation |
Sample size determination for testing Pearson's correlation coefficient
Description
This function performs sample size computation for testing Pearson's correlation coefficient based on precision requirements (i.e., type-I-risk, type-II-risk and an effect size).
Usage
size.cor(rho = NULL, delta,
alternative = c("two.sided", "less", "greater"),
alpha = 0.05, beta = 0.1, output = TRUE)
Arguments
rho |
a number indicating the correlation coefficient under the null hypothesis, |
delta |
minimum difference to be detected, |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
alpha |
type-I-risk, |
beta |
type-II-risk, |
output |
logical: if |
Value
Returns an object of class size
with following entries:
call | function call |
type | type of the test (i.e., correlation coefficient) |
spec | specification of function arguments |
res | list with the result, i.e., optimal sample size |
Author(s)
Takuya Yanagida takuya.yanagida@univie.ac.at,
References
Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS. New York: John Wiley & Sons.
Rasch, D., Pilz, J., Verdooren, L. R., & Gebhardt, G. (2011). Optimal experimental design with R. Boca Raton: Chapman & Hall/CRC.
See Also
seqtest.cor
, size.mean
, size.prop
, print.size
Examples
#--------------------------------------
# H0: rho = 0.3, H1: rho != 0.3
# alpha = 0.05, beta = 0.2, delta = 0.2
size.cor(rho = 0.3, delta = 0.2, alpha = 0.05, beta = 0.2)
#--------------------------------------
# H0: rho <= 0.3, H1: rho > 0.3
# alpha = 0.05, beta = 0.2, delta = 0.2
size.cor(rho = 0.3, delta = 0.2, alternative = "greater", alpha = 0.05, beta = 0.2)