Imputation of Missing Data in Sequence Analysis


[Up] [Top]

Documentation for package ‘seqimpute’ version 2.0.0

Help Pages

addcluster Function that adds the clustering result to a 'seqimp' object obtained with the 'seqimpute' function
fromseqimp Transform an object of class 'seqimp' into a dataframe or a 'mids' object
gameadd Example data set: Game addiction
plot.seqimp Plot a 'seqimp' object
print.seqimp Print a 'seqimp' object
seqaddNA Generation of missing on longitudinal categorical data.
seqcomplete Extract all the trajectories without missing value.
seqimpute seqimpute: Imputation of missing data in longitudinal categorical data
seqmissfplot Plot the most common patterns of missing data.
seqmissimplic Identification and visualization of states that best characterize sequences with missing data
seqmissIplot Plot all the patterns of missing data.
seqQuickLook Summary of the types of gaps among a dataset
seqTrans Spotting impossible transitions in longitudinal categorical data
seqwithmiss Extract all the trajectories with at least one missing value
summary.seqimp Summary of a 'seqimp' object