ThinDataToDESeqDataSet {seqgendiff} | R Documentation |
Converts a ThinData S3 object into a DESeqDataSet S4 object.
Description
The design formula in the resulting DESeqDataSet is just the sum of all
variables in designmat
from the ThinData object (except the
intercept term). You should change this design formula if you want to
study other models.
Usage
ThinDataToDESeqDataSet(obj)
Arguments
obj |
A ThinData S3 object. This is generally output by either
|
Value
A DESeqDataSet
S4
object. This will allow you to insert the simulated
data directly into DESeq2.
Author(s)
David Gerard
Examples
## Generate simulated data and modify using thin_diff().
## In practice, you would use real data, not simulated.
set.seed(1)
n <- 10
p <- 1000
Z <- matrix(abs(rnorm(n, sd = 4)))
alpha <- matrix(abs(rnorm(p, sd = 1)))
mat <- round(2^(alpha %*% t(Z) + abs(matrix(rnorm(n * p, sd = 5),
nrow = p,
ncol = n))))
design_perm <- cbind(rep(c(0, 1), length.out = n), runif(n))
coef_perm <- matrix(rnorm(p * ncol(design_perm), sd = 6), nrow = p)
design_obs <- matrix(rnorm(n), ncol = 1)
target_cor <- matrix(c(0.9, 0))
thout <- thin_diff(mat = mat,
design_perm = design_perm,
coef_perm = coef_perm,
target_cor = target_cor,
design_obs = design_obs,
permute_method = "hungarian")
## Convert ThinData object to DESeqDataSet object.
seobj <- ThinDataToDESeqDataSet(thout)
class(seobj)
## The "O1" variable in the colData corresponds to design_obs.
## The "P1" and "P2" variables in colData correspond to design_perm.
seobj
[Package seqgendiff version 1.2.4 Index]