hmm_mvad {seqHMM} | R Documentation |
Hidden Markov model for the mvad data
Description
A hidden Markov model (MMM) fitted for the mvad
data.
Format
A hidden Markov model of class hmm
;
unrestricted model with six hidden states.
Details
Model was created with the following code:
data("mvad", package = "TraMineR") mvad_alphabet <- c("employment", "FE", "HE", "joblessness", "school", "training") mvad_labels <- c("employment", "further education", "higher education", "joblessness", "school", "training") mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR") mvad_seq <- seqdef(mvad, 17:86, alphabet = mvad_alphabet, states = mvad_scodes, labels = mvad_labels, xtstep = 6) attr(mvad_seq, "cpal") <- colorpalette[[6]] # Starting values for the emission matrix emiss <- matrix( c(0.05, 0.05, 0.05, 0.05, 0.75, 0.05, # SC 0.05, 0.75, 0.05, 0.05, 0.05, 0.05, # FE 0.05, 0.05, 0.05, 0.4, 0.05, 0.4, # JL, TR 0.05, 0.05, 0.75, 0.05, 0.05, 0.05, # HE 0.75, 0.05, 0.05, 0.05, 0.05, 0.05),# EM nrow = 5, ncol = 6, byrow = TRUE) # Starting values for the transition matrix trans <- matrix(0.025, 5, 5) diag(trans) <- 0.9 # Starting values for initial state probabilities initial_probs <- c(0.2, 0.2, 0.2, 0.2, 0.2) # Building a hidden Markov model init_hmm_mvad <- build_hmm(observations = mvad_seq, transition_probs = trans, emission_probs = emiss, initial_probs = initial_probs) set.seed(21) fit_hmm_mvad <- fit_model(init_hmm_mvad, control_em = list(restart = list(times = 100))) hmm_mvad <- fit_hmm_mvad$model
See Also
Examples of building and fitting HMMs in build_hmm
and
fit_model
; and mvad
for more information on the data.
Examples
data("hmm_mvad")
# Plotting the model
plot(hmm_mvad)
[Package seqHMM version 1.2.6 Index]