ishigami_Fun {sensobol} | R Documentation |
Ishigami function
Description
It implements the Ishigami and Homma (1990) function.
Usage
ishigami_Fun(X)
Arguments
X |
A data frame or numeric matrix where each column is a model input and each row a sample point. |
Details
The function requires 3 model inputs and reads as
y=\sin(x_1) +a \sin(x_2) ^ 2 + b x_3 ^4 \sin(x_1)\,,
where a=2
, b=1
and (x_1,x_2,x_3)\sim\mathcal{U}(-\pi, +\pi)
. The
transformation of the distribution of the model inputs from U(0, 1)
to
U(-\pi, +\pi)
) is conducted internally.
Value
A numeric vector with the model output.
References
Ishigami T, Homma T (1990). “An importance quantification technique in uncertainty analysis for computer models.” Proceedings. First International Symposium on Uncertainty Modeling and Analysis, 12, 398–403.
Examples
# Define settings
N <- 100; params <- paste("X", 1:3, sep = "")
# Create sample matrix
mat <- sobol_matrices(N = N, params = params)
# Compute Ishigami function
Y <- ishigami_Fun(mat)
[Package sensobol version 1.1.5 Index]