weightTSA {sensitivity} | R Documentation |
Weight-function to transform an output variable in order to perform Target Sensitivity Analysis (TSA)
Description
Transformation function of one variable (vector sample)
Usage
weightTSA(Y, c, upper = TRUE, type="indicTh", param=1)
Arguments
Y |
The output vector |
c |
The threshold |
upper |
TRUE for upper threshold and FALSE for lower threshold |
type |
The weight function type ("indicTh", "zeroTh", logistic", "exp1side"):
|
param |
The parameter value for "logistic" and "exp1side" types |
Details
The weight functions depend on a threshold c
and/or a smooth relaxation. These functions are defined as follows
if type = "indicTh":
w = 1_{Y>c}
(upper threshold) andw = 1_{Y<c}
(lower threshold),if type = "zeroTh":
w = Y 1_{Y>c}
(upper threshold) andw = Y 1_{Y<c}
(lower threshold),if type = "logistic":
w = \left[ 1 + \exp{\left( -param\frac{Y-c}{|c|}\right)}\right]^{-1}
(upper threshold) and
w = \left[ 1 + \exp{\left( -param\frac{c-Y}{|c|}\right)}\right]^{-1}
(lower threshold),
if type = "exp1side":
w = \left[ 1 + \exp{\left( -\frac{\max(c - Y, 0)}{\frac{param}{5} \sigma(Y)}\right)}\right]
(upper threshold) and
w = \left[ 1 + \exp{\left( -\frac{\max(Y - c, 0)}{\frac{param}{5} \sigma(Y)}\right) }\right]
(lower threshold), where
\sigma(Y)
is an estimation of the standard deviation of Y andparam = 1
is a parameter tuning the smoothness.
Value
The vector sample of the transformed variable
Author(s)
B. Iooss
References
H. Raguet and A. Marrel, Target and conditional sensitivity analysis with emphasis on dependence measures, Preprint, https://hal.archives-ouvertes.fr/hal-01694129
A. Marrel and V. Chabridon, 2021, Statistical developments for target and conditional sensitivity analysis: Application on safety studies for nuclear reactor, Reliability Engineering & System Safety, 214:107711.
A. Spagnol, Kernel-based sensitivity indices for high-dimensional optimization problems, PhD Thesis, Universite de Lyon, 2020
Spagnol A., Le Riche R., Da Veiga S. (2019), Global sensitivity analysis for optimization with variable selection, SIAM/ASA J. Uncertainty Quantification, 7(2), 417–443.
Examples
n <- 100 # sample size
c <- 1.5
Y <- rnorm(n)
Yt <- weightTSA(Y, c)